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EXECUTIVE SUMMARY 

In the recently completed Iowa Highway Research Board (IHRB) project TR-664, Low-Cost 

Rural Surface Alternatives: Demonstration Project, several stabilization methods for improving 

the performance of and minimizing freeze-thaw damage on granular-surfaced roads were studied 

over a two-mile stretch of Vail Avenue in Hamilton County, Iowa. The performance of the 

stabilized and control sections over the 2013–2014 and 2014–2015 seasonal freeze-thaw periods 

were assessed using laboratory tests, field tests, visual surveys, subsurface temperature sensors, 

and a weather station.  

The present project was conducted to continue to monitor the performance and document the 

maintenance costs of the test sections through the 2016–2017 seasonal freeze-thaw period. 

Performance-based field tests, including dynamic cone penetrometer (DCP), falling weight 

deflectometer (FWD), and multichannel analysis of surface waves (MASW) tests, were 

conducted on the sections before freezing in November 2016 and after thawing in April 2017. 

The surface performance and maintenance costs of the test sections as well as the ground 

temperatures of the test site were also monitored.  

Compared to the winters of 2013–2014 and 2014–2015, that of 2016–2017 was much warmer, 

with shorter freezing and thawing periods (74 freezing and 8 thawing days), resulting in a much 

shallower frost penetration depth of 2 ft compared to 4 and 5 ft in the previous winters. 

Before freezing, all stabilized surface layers exhibited high California Bearing Ratio (CBR) 

values above 60%, but the CBR of the fly ash-stabilized surface layer decreased significantly 

after two years of service. Due to the relatively warmer and shorter winter of 20162017, the 

CBR values of most sections did not decrease significantly after thawing. As observed in the TR-

664 study, the CBR values of the subgrades beneath the macadam-based sections continued to be 

approximately twice those of the non-macadam sections in both pre-freezing and post-thawing 

tests.  

In general, the 2016–2017 pre-freezing and post-thawing FWD tests showed that the stiffnesses 

of most sections decreased after thawing, except for the clean macadam sections (Section 5 and 

6), whose stiffnesses remained nearly constant. Compared to the 2013–2014 and 2014–2015 test 

results, the stiffness reductions from fall 2016 to spring 2017 were smaller due to the relatively 

shorter freezing and thawing periods, shallower frost penetration depth, and lower levels of 

precipitation. Similar to the CBR results, the FWD tests on the macadam sections yielded 

composite stiffnesses that were still approximately twice those of the non-macadam sections, 

with the recycled portland cement concrete (RPCC) macadam sections yielding the highest 

average surface course modulus due to continued hydration of the portland cement in the 

recycled materials. In contrast, the fly ash- and cement-treated sections suffered significant 

reductions in stiffness two years after construction.  

The results of the MASW tests exhibited trends that were in close agreement with those of the 

FWD tests and therefore support the conclusions drawn from the FWD tests.  



 

xii 

Maintenance activities were recorded by the Hamilton County Secondary Roads Department. 

The sections were bladed by motor grader only two to three times each year, except for one 

instance in which a total of 640 tons of fresh rock was dumped to resurface the entire two-mile 

stretch of test sections. Based on the newly collected maintenance data, the recalculated break-

even periods for the various stabilization methods were approximately the same as those 

determined in the TR-664 report. 

Survey photos taken during the 2016–2017 freeze-thaw periods showed that all of the stabilized 

sections yielded much less rutting than the control sections during the thawing period. However, 

many potholes appeared on the stabilized sections with stronger base layers (i.e., the macadam 

and chemically stabilized sections). This behavior was not observed in the 2014 and 2015 

thawing periods. The formation of potholes in these sections may be attributable to the gradation 

and quality of the new surfacing materials and non-uniform support conditions in the stiffer base 

layers. Further study is needed to better understand the mechanism of the observed increase in 

potholes in these sections. 
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CHAPTER 1. INTRODUCTION 

The Iowa Highway Research Board (IHRB) Phase I project TR-632, Low-Cost Rural Surface 

Alternatives: Literature Review and Recommendations, produced a comprehensive literature 

review to assess cost-effective technologies and geomaterials for improving the performance of 

and mitigating freeze-thaw damage on low-volume roads (White and Vennapusa 2013). Based 

on the recommendations of the TR-632 project, the recently completed IHRB project TR-664, 

Low-Cost Rural Surface Alternatives: Demonstration Project, featured the design, construction, 

and monitoring of 17 stabilized demonstration sections over a two-mile stretch of the heavily 

used granular-surfaced Vail Avenue in Hamilton County, Iowa. A total of nine different 

geomaterials, three chemical stabilizers, and four types of geosynthetics were used to 

mechanically or chemically stabilize the various sections. The construction procedures, costs, 

and performance of the test sections were documented in the TR-664 project report (Li et al. 

2015). Statistical analyses were also conducted on the field test data to evaluate the relative 

effectiveness of the different stabilization methods (Li et al. 2017b). 

To continue to evaluate the performance and durability and document the maintenance costs of 

the test sections, field tests were conducted before freezing in November 2016 and after thawing 

in April 2017. Field tests, including multichannel analysis of surface waves (MASW), falling 

weight deflectometer (FWD), and dynamic cone penetrometer (DCP) tests, were conducted on 

all of the test sections. The surface performance and maintenance costs of the sections as well as 

the subgrade temperature profile of the test site were also monitored. Based on the newly 

collected field testing and maintenance cost data, the relative mechanistic performance and 

service lives of the different stabilization methods could be more accurately predicted. 

1.1 Project Goals, Objectives, and Scope 

The goals of this project were to continue to perform in situ tests and visual surveys and collect 

maintenance, weather, and subgrade temperature data over the 2016–2017 freeze-thaw cycle in 

order to further quantify the performance of the demonstration sections. These data were used to 

reassess the relative performance of the different stabilization methods, enabling more accurate 

long-term predictions of performance and maintenance costs and providing continuity with 

subsequent phases of this research. 

The specific objectives of the project were as follows: 

1. Perform additional field tests, including DCP, MASW, and FWD tests, to monitor the 

mechanical performance of the test sections. 

2. Perform visual surveys to document any rutting, potholes, washboarding, frost heave, or 

other damage or distress. 

3. Collect subgrade temperature data from the embedded thermocouples and weather data from 

the weather station installed at the site. 

4. Document maintenance activities and costs. 

5. Use the data to reassess the relative performance and projected life-cycle maintenance costs 

of the different stabilization methods. 
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1.2 Benefits of the Research 

The long-term benefits of the multiple-phase demonstration project are to improve the quality, 

longevity, and state of good repair of Iowa roadways, which constitute a vital component of 

Iowa’s infrastructure. The continuously collected field data can provide a better understanding of 

the longer-term performance, costs, and benefits of the various stabilization methods for 

granular-surfaced road systems. As a result, county engineers will have improved information 

that they can use to decide on stabilization methods to help prevent and minimize damage due to 

frost boils and moisture-related damage on unbound granular roads. 

1.3 Organization of the Report 

Chapter 2 contains the field testing and data analysis methods used in this study. Chapter 3 

presents the weather and ground temperature data, maintenance costs, pre-freezing and post-

thawing field test results, and surface performance of the test sections. Conclusions and 

recommendations are provided in Chapter 4, and raw field testing data and visual survey photos 

are summarized in the appendices. 
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CHAPTER 2. FIELD TESTING METHODS 

Field tests used to determine the shear strength and stiffness of the various demonstration 

sections are detailed in the following sections. 

2.1 Dynamic Cone Penetrometer Test 

DCP tests were performed in accordance with ASTM D6951-09, Standard Test Method for Use 

of the Dynamic Cone Penetrometer in Shallow Pavement Applications, to estimate the shear 

strength of the surface course and subgrade materials. According to ASTM D 6951-09, DCP 

tests should not be used for testing granular materials containing a large percentage of aggregates 

greater than 2 in. in size. Therefore, the DCP tests for the macadam stone-based sections in the 

first mile were performed in boreholes drilled through the macadam base layers, as shown in 

Figure 1. 

 

Figure 1. Dynamic cone penetrometer test: (a) drilling through macadam base layers and 

(b) performing the DCP test 

The dynamic cone penetrometer index (DCPI), with units of inches per blow, was measured for 

the various demonstration sections and used in the empirical correlations of equations (1) 

through (3) to estimate the in situ California Bearing Ratio (CBR) values (referred to as DCP-

CBR): 

for all soils except CL soils with CBR < 10 and CH soils, 1.12- 292 / ( 25.4)DCP CBR DCPI   (1) 

for CL soils with CBR < 10, 2- 1/ (0.432283 )DCP CBR DCPI   (2) 

(a) (b)
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for CH soils, - 1/ (0.072923 )DCP CBR DCPI   (3) 

In this project, all of the demonstration sections were analyzed as two-layered systems consisting 

of a surface aggregate layer on top of a subgrade layer. Based on the DCP test results, the 

boundary between the two layers was identified by a sudden change in the slope of the depth 

profiles, as shown in Figure 2.  

 

Figure 2. Example of DCP depth profiles: (a) cumulative blows, (b) DCPI, and (c) 

DCP-CBR 

The weighted-average CBR of each material layer can also be calculated using equation (4). The 

notation DCP-CBRAGG is used to denote the weighted-average CBR of the surface aggregate 

layer, and DCP-CBRSG represents the weighted-average CBR of the subgrade over a depth of 

18 in. below the interface of the surface aggregate and subgrade.  

1 1( ) ( ) ( )
Weighted -average i i i i n n

n

i

CBR H CBR H CBR H
CBR

H

     



  (4) 

2.2 Falling Weight Deflectometer Test 

FWD tests were conducted to determine the stiffness of the test sections. A Kuab FWD device 

with an 11.81 in. segmented loading plate was used in project TR-664, but that device is no 

longer available. Therefore, the FWD tests in the present project were conducted by the Iowa 

DOT Office of Construction and Materials using a JILS-20 FWD with a 12 in. diameter rigid 

loading plate. The measurement ranges of the JILS FWD deflection sensors are much smaller 

than those of the Kuab sensors, so the maximum impact load for the post-thawing tests was 

limited to approximately 4,000 lbs for the second-mile sections to avoid overloading the sensors.  
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A single equivalent composite elastic modulus was calculated for each test location system using 

equation (5): 

 2

0

0

1
FWD Composite

A
E f

d

 



   (5) 

where 

𝐸𝐹𝑊𝐷−𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒= composite elastic modulus (psi) 

d0 = measured deflection under the center of the loading plate (in.) 

ν = Poisson’s ratio (assumed to be 0.4) 

0 = normalized applied peak stress (psi) 

A = radius of the plate (in.) 

f = shape factor, assumed to be 8/3 because the rigid loading plate can result in a parabolic stress 

distribution on cohesionless materials (Vennapusa and White 2009) 

The FWD test data were also used to calculate separate elastic moduli for the surface course and 

subgrade layers using the approach in the AASHTO Guide for the Design of Pavement 

Structures (AASHTO 1993). The AASHTO approach for calculating the moduli of a two-layered 

system is based on the equivalent layer theory and is detailed in Li et al. (2015). 

2.3 Multi-channel Analysis of Surface Waves Test 

MASW tests were used to evaluate the stiffness of a multi-layered representation of the test 

sections at lower strain levels than the FWD test. A 2 lbs ball-peen hammer with an attached 

accelerometer for triggering was used as a seismic source to impact a 6 in. square by 1 in. thick 

aluminum plate resting on the road surface to generate the surface waves. The vertical velocity of 

the surface was measured using an array of 24 4.5 Hz geophone receivers installed on a custom-

built land streamer with 6 in. spacing. The testing procedure is detailed in Li et al. (2017a). The 

lower amount of energy (compared to the energy produced by a larger 10 lbs sledgehammer used 

in some tests) and close receiver spacing were used to focus the measurements on the surface 

gravel layer and top few inches of subgrade. The MASW test configuration is summarized in 

Table 1. 

Table 1. Configuration used for the MASW test  

Test setup parameter Value 

Source-to-first-receiver offset (x1) 12 in. 

Receiver spacing (dx) 6 in. 

Total number of receivers (N) 24 

Total length of receiver spread (XT) 11.5 ft 
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The MASW test measures the seismic Rayleigh wave velocity as a function of frequency, from 

which the shear wave velocity or, alternatively, the small-strain shear modulus (Gmax) can be 

determined as a function of depth for the surface course and subgrade (Lin and Ashlock 2011). 

Data from the MASW tests were used to back-calculate the shear-wave velocity (Vs) profile 

through an inversion procedure that uses the measured dispersion characteristics of the surface 

(Rayleigh) wave velocity (VR) as input. The phase velocity and intercept time scanning (PIS) 

method was used to generate experimental dispersion images from the MASW test data, and the 

hybrid genetic-simulated annealing (GSA) inversion procedure was used to back-calculate the 

layered shear wave velocity profiles. The PIS and GSA methods are detailed in Lin (2014).  

The MASW back-calculation procedure typically involves specifying layer unit weights and 

Poisson’s ratios, after which the optimization procedure automatically searches over ranges of 

layer thicknesses and shear wave velocities to find a best match between the measured and 

theoretical dispersion images. In this study, however, the thicknesses of the surface layers were 

set equal to the values determined from the DCP test data, so the back-calculation procedure 

searched only over a range of layer shear wave velocities. The standard Proctor maximum dry 

unit weights of the surface aggregate (140 pcf) and subgrade (98 pcf) determined in the previous 

phase of the project were used for all sections. The Poisson’s ratios of the surface aggregate and 

subgrade material were assumed to be 0.3 and 0.4, respectively. 

2.4 Ground Temperature Monitoring 

To monitor the local weather conditions, ground temperature, and frost depth of a representative 

section of Vail Avenue, a weather station (Figure 3[a]) and six subgrade thermocouples (Figure 

3[b]) were installed in November 2013. The Novalynx Model 110-WS-16 weather station was 

installed to record the average ambient air temperature, relative humidity, wind speed and 

direction, and precipitation at 15-minute intervals. Each of the Type T thermocouples was 

connected to a separate battery-powered data logger that recorded ground temperatures at  

5-minute intervals with a precision of 0.5 °F. The depths of the thermocouples are shown in 

Figure 3(c). The top sensor is at the boundary between the surface gravel and subgrade, and the 

bottom sensor is 5 ft below the roadway surface.  
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Li et al. 2015, Institute for Transportation 

Figure 3. Weather and ground temperature monitoring equipment: (a) weather station, (b) 

subgrade thermocouples and data loggers, and (c) layout of thermocouples 
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CHAPTER 3. FIELD TEST RESULTS 

The ground temperature, maintenance activities, and mechanical and surface performance of the 

Vail Avenue test sections were continuously monitored during the 2016–2017 seasonal freeze-

thaw period. The nominal as-constructed cross-section profiles of the demonstration sections are 

shown in Figure 4.  

 

Figure 4. Nominal cross-section profiles of the test sections (not to scale): (a) 1st mile 

macadam-based stabilization sections and control section and (b) 2nd mile control, 

mechanically and chemically stabilized sections 

The two control sections at the beginning of the second mile from the Phase II study were 

combined into a single control section in the present study. Additionally, the control section at 

the end of the second mile was not included in this study because its longitudinal grade is much 

steeper than that of the other sections.  
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3.1 Weather and Ground Temperature 

Weather conditions and ground temperatures were monitored during the 2016–2017 seasonal 

free-thaw period, as shown in Figure 5. 

 

Figure 5. Air and ground temperature data during 2016–2017 seasonal freeze-thaw period  

The air temperature first decreased below 32 °F on December 4, 2016, and the lowest air 

temperature of about -19 °F was reached on December 18, 2016. The air temperature increased 

and mostly remained above 32 °F after March 20, 2017. During the freezing period, four or five 

relatively long warm periods were observed.  

Using the ground temperature data, the maximum frost penetration depth and the freezing and 

thawing periods were determined for the test site. The 2016–2017 32 °F isotherm line is 

compared to the data collected in the previous phase of the project in Figure 6.  
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Figure 6. 20162017 ground freezing-thawing period of the project site compared with 

those of 2013–2014 and 2014–2015 winters 

Relative to the winters of 2013–2014 and 2014–2015, the maximum frost penetration depth of 

the milder 2016–2017 winter was much shallower at only 2.25 ft, and the freezing and thawing 

periods were much shorter. The isotherms reveal that the freezing and thawing periods at the 

surface were approximately 74 and 8 days, respectively. The freezing period began around 

December 2, 2016 and progressed to a depth of about 2.25 ft by January 28, 2017. The ground 

started to thaw from the top down and the bottom up around the same date of February 14 and 

progressed until the last portion of frozen subgrade at a depth of approximately 1.5 ft thawed 

around February 21, 2017. The historical ground freezing-thawing data from the site are 

summarized in Table 2. 

Table 2. Summary of measured ground freezing-thawing periods  

Year 

Max frost 

depth (ft) 

Freezing 

period 

(days) 

Thawing 

period 

(days) 

Date of 

1st freeze 

Date of 

last thaw 

Depth of last 

thaw (ft) 

2013-2014 5+ 119 40 Nov 13 Apr 21 3.75 

2014-2015 4 116 23 Nov 15 Mar 30 2.5 

2016-2017 2.25 74 8 Dec 8 Mar 17 1.5 
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Rainfall data were also recorded during the project. The cumulative precipitation at the site one 

month before the post-thawing field testing was 0.7 in., which is much lower than the cumulative 

precipitations of the same period in 2014 (12.88 in.) and 2015 (2.04 in.).  

3.2 Maintenance Records  

Maintenance activities for the test sections from the end of the Phase II project to May 15, 2017 

were documented by the Hamilton County Secondary Roads Department. Based on the updated 

maintenance records, the break-even periods of the various stabilization methods relative to the 

costs of continuing the pre-2013 maintenance practice were recalculated and are shown in Figure 

7.  
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Figure 7. Estimated break-even periods of the (a) 1st mile and (b) 2nd mile test sections 
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The cost shown at 0 years is the construction cost for each section. This cost is $0 for the 

continuation of pre-2013 maintenance practices (which is not adjusted for inflation because the 

construction costs were from 2013 and 2014). The slopes of the projected cumulative costs 

changed only slightly, such that the updated break-even periods are approximately the same as 

those calculated in the previous phase of the project (TR-664). The projected costs of the 

macadam sections containing bentonite or nonwoven geotextile changed somewhat, but their 

break-even periods remained consistent beyond 20 years. The only break-even periods below 20 

years that changed based on the updated data were for the dirty macadam section (Section 1A), 

which increased from 11 to 12 years, and for RPCC macadam with nonwoven geotextile section 

(Section 8), which decreased from 13 to 12 years. Details and related costs associated with the 

maintenance activities are summarized in Table 3.  

Table 3. Maintenance records and estimated costs of the test sections  

Date Section # 

Material 

Cost 

Equipment 

Cost 

Labor 

Cost 

Total 

Cost Notes 

5/19/2015 
Control 

Sections 
$0 $16 $8 $24 

Bladed road from the weather 

station south to station 4975 

for 15 minutes.  

5/19/2015 

Geotextile 

+ Geogrid 

Section 

19A 

$300 $48 $23 $371 

Hauled 1 load of rock 

between station 9707 and 

station 1007 and bladed for 

15 minutes.  

6/4/2015 All $0 $64 $31 $95 
Spent 1 hour blading the two 

miles of sections  

11/19/2015 All $0 $48 $23 $71 
Bladed the two miles for 45 

minutes. 

4/1/2016 All $8,873 $385 $186 $9,443 

Hauled 640 T of 1 in. Road 

Stone to the two-mile research 

project. Total material cost 

was $8,872.60.  

10/27/2016 All $0 $85 $41 $126 

Pulled in both sides of the 

whole two miles. Two rounds 

at 40 minutes per mile. 

3/6/2017 All $0 $64 $31 $95 

Bladed the two miles of this 

road for 1 hour to get rid of 

some potholes. 

4/14/2017 All $0 $32 $16 $48 

Spent 1.5 hours blading the 

two miles. One load of rock 

was added to the control 

Section 10.  

5/12/2017 All $0 $96 $47 $143 Spent 1.5 hours to fix potholes 

 

In 2015, two routine motor grader bladings were performed on all of the test sections, and one 

truckload of rock was dumped to cover the exposed geosynthetic of the bi-axial geogrid with 

nonwoven geotextile section (Section 19A). In 2016, a total of 640 tons of 1 in. road stone was 

spread on all of the test sections due to material degradation of the wearing surface. Only one 
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blading was performed in October 2016 on all of the sections. During the 2017 thawing period, 

three bladings were performed to fix potholes in the test sections, which are shown and discussed 

in the survey photo section of this chapter. Based on the maintenance records, it can be 

concluded that all of the stabilized sections performed satisfactorily, but the wearing surface 

material degraded significantly after three years of service. 

3.3 Changes in Thickness and Shear Strength of the Test Sections 

The DCP tests were used to estimate the thicknesses of the surface aggregate layers as well as 

the CBR values of both the surface aggregate layers and subgrade. These pre-freezing and post-

thawing DCP tests were conducted in November 2016 and April 2017, respectively. All of the 

DCP depth profiles are summarized in Appendix A and Appendix B. The average thicknesses of 

the surface aggregate layers and weighted-average CBR values of the surface and subgrade 

materials are compared in Table 4. 
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Table 4. 2016–2017 pre-freezing and post-thawing DCP test results 

  
NA: CBRAGG cannot be determined for the macadam base layers because their nominal aggregate sizes are larger than 2 in. 

 

Change Change Change

(Post-Pre) (Post-Pre) (Post-Pre)

1A Dirty Macadam 16 17 1 15.6 13.8 -1.8

1B Dirty Macadam + Bentonite 18 18 0 23.9 17.4 -6.5

2 Dirty Macadam + Calcium Chloride 16 18 2 19.9 13.4 -6.4

3 Dirty Macadam + Bentonite + Geotextile 14 13 0 24.9 15.6 -9.3

4 Dirty Macadam + NW geotextile 17 17 0 28.3 16.8 -11.6

5 Clean Macadam + NW geotextile 16 15 -1 13.5 10.3 -3.2

6 Clean Macadam 14 14 0 29.7 13.0 -16.7

7 RPCC Macadam 15 16 1 17.9 14.9 -3.0

8 RPCC Macadam + NW geotextile 14 14 1 19.1 14.0 -5.0

9 Control 7 5 -2 63.4 116.0 52.5 11.6 9.2 -2.3

10 & 11 Control 6 8 1 148.9 117.2 -31.6 7.9 4.6 -3.3

12 Aggregate Columns + Geocomp. Linings 5 5 0 307.8 73.8 -234.0 12.1 3.6 -8.4

13 Aggregate Columns 4 4 0 81.1 49.9 -31.2 15.0 7.1 -8.0

14 Control 3 3 0 39.2 21.8 -17.5 9.4 4.7 -4.7

15 5% Bentonite 6 5 -1 62.7 54.0 -8.7 9.5 6.5 -3.0

16 15% Fly Ash 11 11 0 69.3 54.3 -15.0 8.9 13.4 4.5

17 6% Cement 12 11 -1 101.2 78.1 -23.1 8.0 15.6 7.5

18 Geocomposite Drainage Layer 6 6 0 80.1 103.7 23.6 8.3 17.3 9.1

19A BX-Geogrid + NW-Geotextile 10 11 1 392.5 286.3 -106.2 14.0 9.1 -4.9

19B BX-Geogrid 7 7 0 258.1 200.5 -57.6 10.9 6.8 -4.1

NA

Section 

No.
Section Name

Surface Layer Thickness (in) Weighted-average CBRAGG (%) Weighted-average CBRSG (%)

Pre-

freezing

Post-

thawing

Pre-

freezing

Post-

thawing

Pre-

freezing

Post-

thawing
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Outliers that exhibited significantly different values from other locations within the same test 

section were excluded for calculating the average values. The average surface layer thicknesses 

in the pre-freezing and post-thawing tests were very close. However, the DCP-measured 

thicknesses are 2 to 3 in. thicker than the nominal as-constructed cross-section profiles (Figure 

4), possibly due to adding the fresh resurfacing aggregate. Additionally, the differences may be 

caused by the test itself, because the stiff top layer of the subgrade usually has similar shear 

strength to that of the aggregate material. 

For the pre-freezing DCP tests, most sections had very high CBRAGG values greater than 60%, 

except for the control section (Section 14). The average CBRAGG of the fly ash-stabilized section 

was lower than those of the other sections, which indicates that the stabilization effect of the fly 

ash significantly degraded after two years of service. The aggregate columns with geocomposite 

section (Section 12) and bi-axial geogrid stabilized sections (Sections 19A and 19B) yielded pre-

freezing CBRAGG values that were more than twice those of the other sections. 

After thawing, most sections did not show significantly lower CBR values due to the relatively 

warmer and shorter winter. One exception was the aggregate columns with geocomposite lining 

section (Section 12), for which the CBRAGG decreased by 234%. This decrease may be a result of 

this section being installed next to the drainage tile crossing. Even after the 234% decrease, the 

post-thawing CBRAGG of this section was still approximately 50% higher than that of the 

aggregate columns without geocomposite liners section (Section 13). For the subgrade, the 

CBRSG of the macadam sections generally continued to be higher than those of all other sections 

for both the pre-freezing and post-thawing tests, as was found in the TR-664 study. In addition, 

the CBRSG of the fly ash, cement, and geocomposite drainage layer sections increased slightly 

from the pre-freezing to the post-thawing tests, a trend that was not observed for any other 

sections.  

3.4 Changes in Stiffness of the Test Sections 

The FWD and MASW tests were conducted to determine the stiffness changes of the test 

sections.  

3.4.1 Falling Weight Deflectometer Test Results 

To determine the changes in stiffness of the test sections from the 2014 pre-freezing to the 2017 

pre-freezing periods, the FWD test results are compared in Figure 8.  
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Figure 8. Comparison of 2014 and 2017 pre-freezing FWD test results 

The results show that the 2017 composite modulus (EFWD-Composite), surface aggregate modulus 

(EFWD-AGG), and subgrade modulus (EFWD-SG) values are higher than those from the 2014 test 

results for most of the test sections. The differences are expected due to the different weather, 

moisture, and temperature conditions. In addition, two different FWD devices were used, as 

described above, with the impact load applied by the new device reduced to 4,000 lbs from the 

lowest impact load (6,000 lbs) applied by the previous FWD device in order to avoid overloading 

the sensors of the new device, which had a smaller measurement range. This reduction in impact 

load can result in higher elastic modulus values due to the nonlinear dependence of modulus on 

strain level for geomaterials. However, the relative trends of the two groups of test results are 

similar from section to section.  
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The EFWD-Composite values of the macadam stone-based sections are approximately twice those of 

other sections, which is consistent with the findings of the TR-664 study. For the surface 

aggregate layer, the EFWD-AGG values generally increased between the 2014 and 2017 

measurements for most of the sections. However, the fly ash- and cement-treated sections both 

exhibited significant modulus reductions in their aggregate layers over the three-year span. The 

RPCC macadam sections showed some of the greatest increases in EFWD-AGG values among all of 

the sections, likely due to continuous hydration of the portland cement, which may be a long-

term benefit of using recycled PCC materials. The dirty macadam sections also showed 

significant increases in EFWD-AGG values.  

The 2016–2017 pre-freezing and post-thawing FWD tests were conducted using the same JILS 

FWD device on November 29, 2016 and April 13, 2017, respectively. A heavy rainfall event 

occurred one day before the post-thawing FWD test, so the surface materials were very wet and 

in a weakened state. The test results are provided in Appendix C and compared using statistical 

box plots in Figure 9.  
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Figure 9. Comparison of 2016–2017 pre-freezing and post-thawing FWD test results  

The FWD test results show very repeatable trends between the two test periods. The 

EFWD-Composite values decreased after thawing for most sections, except for the clean macadam 

sections (Sections 5 and 6), which remained almost unchanged. Both the surface aggregate layer 

EFWD-AGG and subgrade EFWD-SG values generally decreased after the 2016–2017 seasonal freeze-

thaw period. However, compared to the test results of the 2013–2014 and 2014–2015 seasons, 

the reductions are smaller due to the relatively short freezing-thawing periods, shallower frost 

penetration depth, and lower levels of precipitation in 2016–2017. 
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MASW test on granular-surfaced road systems was evaluated and compared to the feasibility of 

using the FWD test. The comparison revealed that the MASW test used with recently developed 

data analysis methods and a custom-built land streamer was capable of measuring multi-layered 

elastic moduli of granular-surfaced road systems (Li et al. 2017a). In the present study, MASW 

tests were again conducted for both the pre-freezing and post-thawing conditions. The dispersion 

images of the MASW tests are provided in Appendices D and E, and the corresponding pre-

freezing and post-thawing moduli are compared in Figure 10. The surface and subgrade moduli 

of the macadam sections experienced much smaller reductions after thawing than the other 

sections, and the subgrade moduli of the macadam sections were also generally higher than those 

of most other sections. 

 

Figure 10. Comparison of 2016–2017 pre-freezing and post-thawing MASW test results 

In the present study, MASW tests were conducted at the same times and locations as the FWD 

tests. The 2016–2017 MASW and FWD test results are compared in Figure 11 through Figure 

14.  
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Figure 11. Comparison of 2016 pre-freezing MASW and FWD test results for the first mile 

sections 
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Figure 12. Comparison of 2016 pre-freezing MASW and FWD test results for the second 

mile sections 
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Figure 13. Comparison of 2017 post-thawing MASW and FWD test results for the first mile 

sections 
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Figure 14. Comparison of 2017 post-thawing MASW and FWD test results for the second 

mile sections 

As Figure 11 through Figure 14 show, in the TR-664 study the subgrade modulus values 
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3.5 Survey Photos of the Test Sections 

To monitor the surface conditions and performance of the test sections, survey photographs were 

taken during the 2015–2016 and 2016–2017 seasonal freeze-thaw periods. One group of survey 

photos taken on February 19, 2016 shows that the aggregate columns, fly ash- and cement-

stabilized, and geosynthetic sections performed very well during the 2016 thawing period, while 

significant rutting and frost boils were observed for the control sections (Figure 15). All of the 

macadam stone-based sections on the first mile of test sections showed no surface damage, but 

survey photos were not taken at the time.  

 

Figure 15. Survey photos of Sections 10 through 20 taken on February 19, 2016 
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For the 2016–2017 freeze-thaw period, a total of four groups of survey photos was taken. The 

pre-freezing surface conditions of the test sections are shown in Figure 16 and Figure 17. All 

sections performed well at the time, though a few potholes were observed in control Section 11. 
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Figure 16. Survey photos of Sections 1A through 15 taken on November 21, 2016 
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Figure 17. Survey photos of Sections 16 through 19B taken on November 21, 2016 

During the 2017 thawing period, the test sections performed very differently, as shown in Figure 

18 and Figure 19.  

 

Figure 18. Survey photos of test Sections 1A through 5 taken on February 1, 2017 
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Figure 19. Survey photos of Sections 6 through 19B taken on February 1, 2017 

The macadam stone-based sections (Sections 1A through 8) on the first mile showed almost no 

surface damage, but significant rutting and frost boils were observed in the control sections. The 
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cement and fly ash sections had minor rutting near the shoulders, and the bentonite section had a 

muddy surface and minor rutting. The first survey photo in the third row of Figure 19 also clearly 

demonstrates that aggregate columns with geocomposite liners are a very cost-effective solution 

for frost boils, evidenced by the state of the control section on the other side of the tile crossing. 

Survey photos taken on March 19, 2017 show that all of the sections performed well except for 

the chloride-treated dirty macadam section (Section 2), which yielded more potholes than other 

sections, as shown in Figure 20 and Figure 21. Similar behaviors were observed during the 

2014–2015 thawing period, as documented in the TR-664 project report.  

 

Figure 20. Survey photos of Sections 1A through 12 taken on March 19, 2017 
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Figure 21. Survey photos of Sections 13 through 19B taken on March 19, 2017 

Another group of survey photos was taken during the post-thawing field tests in April 2017 

(Figure 22 and Figure 23).  
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Figure 22. Survey photos of Sections 1A through 12 taken on April 8, 2017 
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Figure 23. Survey photos of Sections 13 through 19B taken on April 8, 2017 

Many potholes appeared in the macadam stone-based and chemically stabilized sections; these 

potholes were not observed in the 2014 and 2015 thawing periods. However, the shear strength 

and stiffness of the base materials of these sections were much higher than those of other 

sections. Therefore, the formation of potholes may be attributable to the gradation and quality of 

the new surfacing material and the non-uniform stiffness of the base materials. Further study is 

needed to better understand the mechanism of pothole formation in these sections.  
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CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS 

In this project, the Vail Avenue rural surface alternatives demonstration sections were 

continuously monitored during the 2016–2017 seasonal freeze-thaw period. The weather and 

subgrade temperature profile were recorded and analyzed to determine the timing, duration, and 

depth of soil freezing. Compared to the 2013–2014 and 2014–2015 seasons, the winter of 2016–

2017 was warmer and had shorter freezing and thawing periods (74 and 8 days, respectively), 

which resulted in a much shallower frost penetration depth of approximately 2.25 ft.  

Performance-based field tests were conducted on the test sections before and after the seasonal 

freeze-thaw period. The thicknesses of the surface layers based on DCP tests were 2 to 3 in. 

thicker than the nominal as-constructed cross-section profiles. The difference might be due to 

adding the fresh resurfacing aggregate and the DCP test itself, because the stiff top layer of the 

subgrade usually has a shear strength that is similar to that of the aggregate material. The DCP 

test results showed that the surface layer thicknesses remained unchanged between the 2016 pre-

freezing and 2017 post-thawing tests. The DCP-CBR values of the stabilized surface layers were 

above 60% before freezing, but the average CBRAGG of the fly ash-stabilized section 

significantly decreased after two years of service. After thawing, the CBR values of most 

sections did not decrease significantly because of the relatively warmer and shorter winter. The 

subgrade CBR values of the macadam sections were about twice those of the other sections for 

both pre-freezing and post-thawing tests.  

The FWD tests were conducted to determine the stiffness changes of the test sections and 

compare the FWD values to those obtained from previous test results. In this study, a different 

FWD device was used, and the applied impact load was 2,000 lbs less than that of the previous 

lowest impact load of the Kuab FWD device. The data showed that the 2016 pre-freezing FWD 

modulus values were higher than those obtained from the 2014 tests, except for the fly ash- and 

cement-treated sections, which exhibited significant reductions in stiffness after two years of 

service. For the 2016 pre-freezing tests, the stiffnesses of the macadam sections were still 

approximately twice those of the other sections. The dirty macadam with bentonite surface 

treatment and RPCC macadam sections yielded some of the highest average surface modulus 

values, likely due to the improved surface stability and continuous hydration of the recycled 

concrete material, respectively. The 2016–2017 pre-freezing and post-thawing FWD test results 

showed that the stiffness of most sections decreased after thawing, except for the clean macadam 

sections (Sections 5 and 6), whose stiffnesses remained almost constant. Compared to the 2013–

2014 and 2014–2015 test results, the stiffness reductions were smaller due to the relatively short 

freezing-thawing periods, shallower frost penetration depth, and lower levels of precipitation 

during the 2017 thawing period. 

The MASW test results showed trends that were very similar to those of the FWD test results. 

The MASW surface modulus values were much higher than those obtained from the FWD tests 

due to the much lower strain level imposed by the MASW test. For the subgrade, the MASW 

tests produced similar but somewhat lower modulus values than the FWD tests. This discrepancy 

can be caused by several factors and needs further study. 
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Maintenance activities and costs were recorded by the Hamilton County Secondary Roads 

Department. Except for a total of 640 tons of rock that was dumped to resurface the entire two-

mile stretch of test sections, very few routine motor grader bladings were performed on the 

sections. Based on the additional maintenance cost data, the break-even periods of the various 

stabilization methods were recalculated and were found to be approximately the same as those 

calculated in the TR-664 project. 

Survey photos taken during the 2016–2017 seasonal freeze-thaw periods showed that all of the 

stabilized sections had much less rutting than the control sections during the thawing period. 

However, many potholes that were not observed in the 2014 and 2015 thawing periods appeared 

on the macadam stone-based and chemically stabilized sections. In addition, the shear strength 

and stiffness of the base materials of these sections were much higher than those of other 

sections. Therefore, the formation of potholes may be attributable to the gradation and quality of 

the new surfacing material and the non-uniform stiffness of the base materials. Further study is 

needed to better understand the mechanism of pothole formation in these sections. 
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APPENDIX A. 2016 PRE-FREEZING DCP TEST RESULTS 

 

Figure 24. 2016 pre-freezing DCP test results for Sections 1A through 8  
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Figure 25. 2016 pre-freezing DCP test results for Sections 9 through 12  
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Figure 26. 2016 pre-freezing DCP test results for Sections 13 through 15  
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Figure 27. 2016 pre-freezing DCP test results for Sections 16 through 18  
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Figure 28. 2016 pre-freezing DCP test results for Sections 19A and 19B 
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APPENDIX B. 2017 POST-THAWING DCP TEST RESULTS 

 

Figure 29. 2017 post-thawing DCP test results for Sections 1A through 2  
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Figure 30. 2017 post-thawing DCP test results for Sections 3 through 5  
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Figure 31. 2017 post-thawing DCP test results for Sections 6 through 8 
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Figure 32. 2017 post-thawing DCP test results for Sections 9 through 12 
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Figure 33. 2017 post-thawing DCP test results for Sections 13 through 15 
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Figure 34. 2017 post-thawing DCP test results for Sections 16 through 18 
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Figure 35. 2017 post-thawing DCP test results for Sections 19A and 19B 
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APPENDIX C. 2016–2017 FWD TEST RESULTS 

 

Figure 36. 2016–2017 pre-freezing and post-thawing FWD test results for first-mile sections 
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Figure 37. 2016–2017 pre-freezing and post-thawing FWD test results for second-mile 

sections 
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APPENDIX D. 2016 PRE-FREEZING MASW DISPERSION IMAGES 

Section 1A Dirty Macadam 
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Section 1B Dirty Macadam + Bentonite 

   

 

 

Section 2 Dirty Macadam + Calcium Chloride 
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Section 3 Dirty Macadam + Bentonite + NW geotextile 

 

 

 

Section 4 Dirty Macadam + NW geotextile 
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Section 5 Clean Macadam + NW geotextile 

  

 

 

Section 6 Clean Macadam 
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Section 7 RPCC Macadam 

  

 

 

Section 8 RPCC Macadam + NW geotextile 
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Section 9 Control 

  

 

 

Section 10 & 11 Control 
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Section 12 Aggregate Columns + Geocomposite Linings 

  

 

 

Section 13 Aggregate Columns 
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Section 15 Bentonite 

  

 

 

Section 16 Fly Ash 
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Section 17 Cement 

  

 

 

Section 18 Geocomposite Drainage Layer 
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Section 19A BX-Geogrid + NW-Geotextile 

  

 

 

Section 19B BX-Geogrid 
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APPENDIX E. 2017 POST-THAWING MASW DISPERSION IMAGES 

Section 1A Dirty Macadam 
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Section 1B Dirty Macadam + Bentonite 

  

 

 

Section 2 Dirty Macadam + Calcium Chloride 
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Section 3 Dirty Macadam + Bentonite + NW geotextile 

  

 

 

Section 4 Dirty Macadam + NW geotextile 
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Section 5 Clean Macadam + NW geotextile 
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Section 7 RPCC Macadam 

  

 

 

Section 8 RPCC Macadam + NW geotextile 
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Section 9 Control 

  

 

 

Section 10 & 11 Control 
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Section 12 Aggregate Columns + Geocomposite Linings 

 

 

 

Section 13 Aggregate Columns 
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Section 14 Control 

  

 

 

Section 15 Bentonite 
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Section 16 Fly Ash 

  

 

 

Section 17 Cement 
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Section 18 Geocomposite Drainage Layer 

  

 

 

Section 19A BX-Geogrid + NW-Geotextile 
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Section 19B BX-Geogrid 
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