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EXECUTIVE SUMMARY

In the recently completed lowa Highway Research Board (IHRB) project TR-664, Low-Cost
Rural Surface Alternatives: Demonstration Project, several stabilization methods for improving
the performance of and minimizing freeze-thaw damage on granular-surfaced roads were studied
over a two-mile stretch of Vail Avenue in Hamilton County, lowa. The performance of the
stabilized and control sections over the 2013-2014 and 2014-2015 seasonal freeze-thaw periods
were assessed using laboratory tests, field tests, visual surveys, subsurface temperature sensors,
and a weather station.

The present project was conducted to continue to monitor the performance and document the
maintenance costs of the test sections through the 2016-2017 seasonal freeze-thaw period.
Performance-based field tests, including dynamic cone penetrometer (DCP), falling weight
deflectometer (FWD), and multichannel analysis of surface waves (MASW) tests, were
conducted on the sections before freezing in November 2016 and after thawing in April 2017.
The surface performance and maintenance costs of the test sections as well as the ground
temperatures of the test site were also monitored.

Compared to the winters of 2013-2014 and 2014-2015, that of 2016—-2017 was much warmer,
with shorter freezing and thawing periods (74 freezing and 8 thawing days), resulting in a much
shallower frost penetration depth of 2 ft compared to 4 and 5 ft in the previous winters.

Before freezing, all stabilized surface layers exhibited high California Bearing Ratio (CBR)
values above 60%, but the CBR of the fly ash-stabilized surface layer decreased significantly
after two years of service. Due to the relatively warmer and shorter winter of 2016—-2017, the
CBR values of most sections did not decrease significantly after thawing. As observed in the TR-
664 study, the CBR values of the subgrades beneath the macadam-based sections continued to be
approximately twice those of the non-macadam sections in both pre-freezing and post-thawing
tests.

In general, the 20162017 pre-freezing and post-thawing FWD tests showed that the stiffnesses
of most sections decreased after thawing, except for the clean macadam sections (Section 5 and
6), whose stiffnesses remained nearly constant. Compared to the 2013-2014 and 20142015 test
results, the stiffness reductions from fall 2016 to spring 2017 were smaller due to the relatively
shorter freezing and thawing periods, shallower frost penetration depth, and lower levels of
precipitation. Similar to the CBR results, the FWD tests on the macadam sections yielded
composite stiffnesses that were still approximately twice those of the non-macadam sections,
with the recycled portland cement concrete (RPCC) macadam sections yielding the highest
average surface course modulus due to continued hydration of the portland cement in the
recycled materials. In contrast, the fly ash- and cement-treated sections suffered significant
reductions in stiffness two years after construction.

The results of the MASW tests exhibited trends that were in close agreement with those of the
FWD tests and therefore support the conclusions drawn from the FWD tests.
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Maintenance activities were recorded by the Hamilton County Secondary Roads Department.
The sections were bladed by motor grader only two to three times each year, except for one
instance in which a total of 640 tons of fresh rock was dumped to resurface the entire two-mile
stretch of test sections. Based on the newly collected maintenance data, the recalculated break-
even periods for the various stabilization methods were approximately the same as those
determined in the TR-664 report.

Survey photos taken during the 20162017 freeze-thaw periods showed that all of the stabilized
sections yielded much less rutting than the control sections during the thawing period. However,
many potholes appeared on the stabilized sections with stronger base layers (i.e., the macadam
and chemically stabilized sections). This behavior was not observed in the 2014 and 2015
thawing periods. The formation of potholes in these sections may be attributable to the gradation
and quality of the new surfacing materials and non-uniform support conditions in the stiffer base
layers. Further study is needed to better understand the mechanism of the observed increase in
potholes in these sections.

xii



CHAPTER 1. INTRODUCTION

The lowa Highway Research Board (IHRB) Phase | project TR-632, Low-Cost Rural Surface
Alternatives: Literature Review and Recommendations, produced a comprehensive literature
review to assess cost-effective technologies and geomaterials for improving the performance of
and mitigating freeze-thaw damage on low-volume roads (White and Vennapusa 2013). Based
on the recommendations of the TR-632 project, the recently completed IHRB project TR-664,
Low-Cost Rural Surface Alternatives: Demonstration Project, featured the design, construction,
and monitoring of 17 stabilized demonstration sections over a two-mile stretch of the heavily
used granular-surfaced Vail Avenue in Hamilton County, lowa. A total of nine different
geomaterials, three chemical stabilizers, and four types of geosynthetics were used to
mechanically or chemically stabilize the various sections. The construction procedures, costs,
and performance of the test sections were documented in the TR-664 project report (Li et al.
2015). Statistical analyses were also conducted on the field test data to evaluate the relative
effectiveness of the different stabilization methods (Li et al. 2017D).

To continue to evaluate the performance and durability and document the maintenance costs of
the test sections, field tests were conducted before freezing in November 2016 and after thawing
in April 2017. Field tests, including multichannel analysis of surface waves (MASW), falling
weight deflectometer (FWD), and dynamic cone penetrometer (DCP) tests, were conducted on
all of the test sections. The surface performance and maintenance costs of the sections as well as
the subgrade temperature profile of the test site were also monitored. Based on the newly
collected field testing and maintenance cost data, the relative mechanistic performance and
service lives of the different stabilization methods could be more accurately predicted.

1.1 Project Goals, Objectives, and Scope

The goals of this project were to continue to perform in situ tests and visual surveys and collect
maintenance, weather, and subgrade temperature data over the 2016-2017 freeze-thaw cycle in
order to further quantify the performance of the demonstration sections. These data were used to
reassess the relative performance of the different stabilization methods, enabling more accurate
long-term predictions of performance and maintenance costs and providing continuity with
subsequent phases of this research.

The specific objectives of the project were as follows:

1. Perform additional field tests, including DCP, MASW, and FWD tests, to monitor the
mechanical performance of the test sections.

2. Perform visual surveys to document any rutting, potholes, washboarding, frost heave, or
other damage or distress.

3. Collect subgrade temperature data from the embedded thermocouples and weather data from
the weather station installed at the site.

4. Document maintenance activities and costs.

Use the data to reassess the relative performance and projected life-cycle maintenance costs

of the different stabilization methods.
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1.2 Benefits of the Research

The long-term benefits of the multiple-phase demonstration project are to improve the quality,
longevity, and state of good repair of lowa roadways, which constitute a vital component of
Iowa’s infrastructure. The continuously collected field data can provide a better understanding of
the longer-term performance, costs, and benefits of the various stabilization methods for
granular-surfaced road systems. As a result, county engineers will have improved information
that they can use to decide on stabilization methods to help prevent and minimize damage due to
frost boils and moisture-related damage on unbound granular roads.

1.3 Organization of the Report

Chapter 2 contains the field testing and data analysis methods used in this study. Chapter 3
presents the weather and ground temperature data, maintenance costs, pre-freezing and post-
thawing field test results, and surface performance of the test sections. Conclusions and
recommendations are provided in Chapter 4, and raw field testing data and visual survey photos
are summarized in the appendices.



CHAPTER 2. FIELD TESTING METHODS

Field tests used to determine the shear strength and stiffness of the various demonstration
sections are detailed in the following sections.

2.1 Dynamic Cone Penetrometer Test

DCP tests were performed in accordance with ASTM D6951-09, Standard Test Method for Use
of the Dynamic Cone Penetrometer in Shallow Pavement Applications, to estimate the shear
strength of the surface course and subgrade materials. According to ASTM D 6951-09, DCP
tests should not be used for testing granular materials containing a large percentage of aggregates
greater than 2 in. in size. Therefore, the DCP tests for the macadam stone-based sections in the
first mile were performed in boreholes drilled through the macadam base layers, as shown in
Figure 1.

o P
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Figure 1. Dynamic cone penetrometer test: (a) drilling through macadam base layers and
(b) performing the DCP test

The dynamic cone penetrometer index (DCPI), with units of inches per blow, was measured for
the various demonstration sections and used in the empirical correlations of equations (1)
through (3) to estimate the in situ California Bearing Ratio (CBR) values (referred to as DCP-
CBR):

for all soils except CL soils with CBR < 10 and CH soils, DCP-CBR = 292/ (DCPI x 25.4)*** (1)

for CL soils with CBR < 10, DCP-CBR =1/ (0.432283x DCPI )2 )



for CH soils, DCP-CBR =1/(0.072923x DCPI) (3)

In this project, all of the demonstration sections were analyzed as two-layered systems consisting
of a surface aggregate layer on top of a subgrade layer. Based on the DCP test results, the
boundary between the two layers was identified by a sudden change in the slope of the depth
profiles, as shown in Figure 2.
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Figure 2. Example of DCP depth profiles: (a) cumulative blows, (b) DCPI, and (c)
DCP-CBR

The weighted-average CBR of each material layer can also be calculated using equation (4). The
notation DCP-CBRagg is used to denote the weighted-average CBR of the surface aggregate
layer, and DCP-CBRsg represents the weighted-average CBR of the subgrade over a depth of

18 in. below the interface of the surface aggregate and subgrade.

(CBR, xH,)+(CBR ,xH,,,)--(CBR xH,)

SH

Weighted -average CBR = (4)

2.2 Falling Weight Deflectometer Test

FWD tests were conducted to determine the stiffness of the test sections. A Kuab FWD device
with an 11.81 in. segmented loading plate was used in project TR-664, but that device is no
longer available. Therefore, the FWD tests in the present project were conducted by the lowa
DOT Office of Construction and Materials using a JILS-20 FWD with a 12 in. diameter rigid
loading plate. The measurement ranges of the JILS FWD deflection sensors are much smaller
than those of the Kuab sensors, so the maximum impact load for the post-thawing tests was
limited to approximately 4,000 Ibs for the second-mile sections to avoid overloading the sensors.



A single equivalent composite elastic modulus was calculated for each test location system using
equation (5):

EFWD—Composite =—F—xf (5)

where

Erwp-composite= COMposite elastic modulus (psi)

do = measured deflection under the center of the loading plate (in.)

v = Poisson’s ratio (assumed to be 0.4)

oo = normalized applied peak stress (psi)

A = radius of the plate (in.)

f = shape factor, assumed to be 8/3 because the rigid loading plate can result in a parabolic stress
distribution on cohesionless materials (Vennapusa and White 2009)

The FWD test data were also used to calculate separate elastic moduli for the surface course and
subgrade layers using the approach in the AASHTO Guide for the Design of Pavement
Structures (AASHTO 1993). The AASHTO approach for calculating the moduli of a two-layered
system is based on the equivalent layer theory and is detailed in Li et al. (2015).

2.3 Multi-channel Analysis of Surface Waves Test

MASW tests were used to evaluate the stiffness of a multi-layered representation of the test
sections at lower strain levels than the FWD test. A 2 Ibs ball-peen hammer with an attached
accelerometer for triggering was used as a seismic source to impact a 6 in. square by 1 in. thick
aluminum plate resting on the road surface to generate the surface waves. The vertical velocity of
the surface was measured using an array of 24 4.5 Hz geophone receivers installed on a custom-
built land streamer with 6 in. spacing. The testing procedure is detailed in Li et al. (2017a). The
lower amount of energy (compared to the energy produced by a larger 10 Ibs sledgehammer used
in some tests) and close receiver spacing were used to focus the measurements on the surface
gravel layer and top few inches of subgrade. The MASW test configuration is summarized in
Table 1.

Table 1. Configuration used for the MASW test

Test setup parameter Value
Source-to-first-receiver offset (x1) 12 in.
Receiver spacing (dx) 6in.
Total number of receivers (N) 24
Total length of receiver spread (Xt) 115 ft




The MASW test measures the seismic Rayleigh wave velocity as a function of frequency, from
which the shear wave velocity or, alternatively, the small-strain shear modulus (Gmax) can be
determined as a function of depth for the surface course and subgrade (Lin and Ashlock 2011).
Data from the MASW tests were used to back-calculate the shear-wave velocity (Vs) profile
through an inversion procedure that uses the measured dispersion characteristics of the surface
(Rayleigh) wave velocity (Vr) as input. The phase velocity and intercept time scanning (PIS)
method was used to generate experimental dispersion images from the MASW test data, and the
hybrid genetic-simulated annealing (GSA) inversion procedure was used to back-calculate the
layered shear wave velocity profiles. The PIS and GSA methods are detailed in Lin (2014).

The MASW back-calculation procedure typically involves specifying layer unit weights and
Poisson’s ratios, after which the optimization procedure automatically searches over ranges of
layer thicknesses and shear wave velocities to find a best match between the measured and
theoretical dispersion images. In this study, however, the thicknesses of the surface layers were
set equal to the values determined from the DCP test data, so the back-calculation procedure
searched only over a range of layer shear wave velocities. The standard Proctor maximum dry
unit weights of the surface aggregate (140 pcf) and subgrade (98 pcf) determined in the previous
phase of the project were used for all sections. The Poisson’s ratios of the surface aggregate and
subgrade material were assumed to be 0.3 and 0.4, respectively.

2.4 Ground Temperature Monitoring

To monitor the local weather conditions, ground temperature, and frost depth of a representative
section of Vail Avenue, a weather station (Figure 3[a]) and six subgrade thermocouples (Figure
3[b]) were installed in November 2013. The Novalynx Model 110-WS-16 weather station was
installed to record the average ambient air temperature, relative humidity, wind speed and
direction, and precipitation at 15-minute intervals. Each of the Type T thermocouples was
connected to a separate battery-powered data logger that recorded ground temperatures at
5-minute intervals with a precision of 0.5 °F. The depths of the thermocouples are shown in
Figure 3(c). The top sensor is at the boundary between the surface gravel and subgrade, and the
bottom sensor is 5 ft below the roadway surface.
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Figure 3. Weather and ground temperature monitoring equipment: (a) weather station, (b)
subgrade thermocouples and data loggers, and (c) layout of thermocouples



CHAPTER 3. FIELD TEST RESULTS

The ground temperature, maintenance activities, and mechanical and surface performance of the
Vail Avenue test sections were continuously monitored during the 2016-2017 seasonal freeze-
thaw period. The nominal as-constructed cross-section profiles of the demonstration sections are
shown in Figure 4.

(@)

Section 1A S 1B S2 S3 S4 S5 S6 S7 S8 S9
6 in. Road ((::r?llcliudrg 6 in. Road

2 in. Road| Stone + f Stone +

Stone Choke _ - Choke ;
5T ChokelStone + 5062 Road Stone |00 5oyl 2 in. Road Stone

Stone |Bentonite | 2in. Chake Stone | Bentonite 2 in. Choke Stone

A 0 0 P ::::::6_iF1._C_Ie_aF1::::: 6in.,F€|E>E:CE
. 81in. Dirty Macadam NW-geotextile -[-="\jacadam -:-:-%Macadam %

Subgrade (A-7-6(10))

le L L
¥ ¥ 1 g #+ 4 1 A 7

1 1 1
1700 ft 250 ft 550 ft 250 ft 235 ft 515 ft 500 ft 500 ft 475 ft 332 ft

-
-

(b)
Section 10/11 S 12 S13 S14 S15 S 16 S17 S18 S 19A S 19B
1in. Road Stope : :
Aggregate Columns 8in. 8in. : :
I W— 1 81in.10ad | SG+AGG |SG+AGG ! :
3550 R R L StoneE 9%)4 1506 Fly|  + 6% 8 in. Road Stone
Existing Agg;- N -8 -1 -0 0.0 |Bentonite Ash Cement | : N
Subgrad e : X
ubgrade Geocomposite BX-geogrid+ BX-
(A-7-6(10)) Liner Geocomposite NW-geotextile geogrid

L | 1 L

T e00ft 7 300ft T 300t |

e e )

L .
T7920ft ' 345 1 345f 400 f 600f ' 600 f . 600 ft

Figure 4. Nominal cross-section profiles of the test sections (not to scale): (a) 1st mile
macadam-based stabilization sections and control section and (b) 2nd mile control,
mechanically and chemically stabilized sections

The two control sections at the beginning of the second mile from the Phase 11 study were
combined into a single control section in the present study. Additionally, the control section at
the end of the second mile was not included in this study because its longitudinal grade is much
steeper than that of the other sections.



3.1 Weather and Ground Temperature

Weather conditions and ground temperatures were monitored during the 20162017 seasonal
free-thaw period, as shown in Figure 5.

70 A

60 -

) M
40 "‘_w‘,/w'mw A g

e Bk

o i
T ! " H\“\uu "'
‘\
o Tt e W i
- ,.f | —_—— — vy M—-- - Tk — gl - —_ —_
=2 30 A = "'\' A | mr f
o kwkr
OJ o
g 201 32°F
£
OJ .
- 10 - Air
—— 6in
— 1ft
0 - 2 ft
3ft
-10 - — 4ft
—— 51t
220 e S S S S— S— S— S S S S— — — — — S B— I— —
© © © © © ~ ~ N~ N~~~ M M M N~ M~~~ N~~~
d4 94 4 494 4d 4 4 494 494 4 4 494 49 4d4 4d4 494 49 +d 9 9d
~ -~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
O~ § 4949 0 ¥ 9 0 1 49 08 1 d 49 © U N o W
M O o4 o d O 4 494 d o O 4 N o O 4 o o
~ =~ ~ =~ =~ ~ ~ ~ ~ =~ ] ~ =~ ~ ~ ~ ~ ~ ~
4 d d d § d 49 9 a9 d d o d 80 0 o oo o <
<4 4 4 4 4 O O O O O 0O O 0O O O o © ©O o
Date

Figure 5. Air and ground temperature data during 20162017 seasonal freeze-thaw period

The air temperature first decreased below 32 °F on December 4, 2016, and the lowest air
temperature of about -19 °F was reached on December 18, 2016. The air temperature increased
and mostly remained above 32 °F after March 20, 2017. During the freezing period, four or five
relatively long warm periods were observed.

Using the ground temperature data, the maximum frost penetration depth and the freezing and
thawing periods were determined for the test site. The 2016-2017 32 °F isotherm line is
compared to the data collected in the previous phase of the project in Figure 6.
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Figure 6. 2016—2017 ground freezing-thawing period of the project site compared with
those of 2013-2014 and 2014-2015 winters

Relative to the winters of 2013-2014 and 20142015, the maximum frost penetration depth of

the milder 20162017 winter was much shallower at only 2

.25 ft, and the freezing and thawing

periods were much shorter. The isotherms reveal that the freezing and thawing periods at the
surface were approximately 74 and 8 days, respectively. The freezing period began around
December 2, 2016 and progressed to a depth of about 2.25 ft by January 28, 2017. The ground
started to thaw from the top down and the bottom up around the same date of February 14 and
progressed until the last portion of frozen subgrade at a depth of approximately 1.5 ft thawed
around February 21, 2017. The historical ground freezing-thawing data from the site are

summarized in Table 2.

Table 2. Summary of measured ground freezing-thawing periods

Freezing Thawing
Max frost period period Date of Date of  Depth of last
Year depth (ft) (days) (days) 1st freeze  last thaw thaw (ft)
2013-2014 5+ 119 40 Nov 13 Apr 21 3.75
2014-2015 4 116 23 Nov 15 Mar 30 2.5
2016-2017 2.25 74 8 Dec 8 Mar 17 1.5
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Rainfall data were also recorded during the project. The cumulative precipitation at the site one
month before the post-thawing field testing was 0.7 in., which is much lower than the cumulative
precipitations of the same period in 2014 (12.88 in.) and 2015 (2.04 in.).

3.2 Maintenance Records

Maintenance activities for the test sections from the end of the Phase Il project to May 15, 2017
were documented by the Hamilton County Secondary Roads Department. Based on the updated
maintenance records, the break-even periods of the various stabilization methods relative to the
costs of continuing the pre-2013 maintenance practice were recalculated and are shown in Figure
7.
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Figure 7. Estimated break-even periods of the (a) 1st mile and (b) 2nd mile test sections
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The cost shown at 0 years is the construction cost for each section. This cost is $0 for the
continuation of pre-2013 maintenance practices (which is not adjusted for inflation because the
construction costs were from 2013 and 2014). The slopes of the projected cumulative costs
changed only slightly, such that the updated break-even periods are approximately the same as
those calculated in the previous phase of the project (TR-664). The projected costs of the
macadam sections containing bentonite or nonwoven geotextile changed somewhat, but their
break-even periods remained consistent beyond 20 years. The only break-even periods below 20
years that changed based on the updated data were for the dirty macadam section (Section 1A),
which increased from 11 to 12 years, and for RPCC macadam with nonwoven geotextile section
(Section 8), which decreased from 13 to 12 years. Details and related costs associated with the
maintenance activities are summarized in Table 3.

Table 3. Maintenance records and estimated costs of the test sections

Material Equipment Labor Total

Date Section # Cost Cost Cost Cost Notes
Control Bladed road from the weather
5/19/2015 . $0 $16 $8 $24  station south to station 4975
Sections :
for 15 minutes.
Geotextile Hauled 1 load of rock
+ Geogrid between station 9707 and
5/19/2015 Section $300 $48 $23 $371 station 1007 and bladed for
19A 15 minutes.
Spent 1 hour blading the two
6/4/2015 All $0 $64 $31 $95 miles of sections
11/19/2015 Al $0 $48 $23  g¢71  Dladed the two miles for 45
minutes.
Hauled 640 T of 1 in. Road
Stone to the two-mile research
4/1/2016 All $8,873 $385 $186  $9,443 oroject. Total material cost
was $8,872.60.
Pulled in both sides of the
10/27/2016 All $0 $85 $41 $126  whole two miles. Two rounds

at 40 minutes per mile.

Bladed the two miles of this
3/6/2017 All $0 $64 $31 $95  road for 1 hour to get rid of
some potholes.

Spent 1.5 hours blading the
two miles. One load of rock

4/14/2017 All $0 $32 $16 $48 was added to the control
Section 10.
5/12/2017 All $0 $96 $47 $143  Spent 1.5 hours to fix potholes

In 2015, two routine motor grader bladings were performed on all of the test sections, and one
truckload of rock was dumped to cover the exposed geosynthetic of the bi-axial geogrid with
nonwoven geotextile section (Section 19A). In 2016, a total of 640 tons of 1 in. road stone was
spread on all of the test sections due to material degradation of the wearing surface. Only one
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blading was performed in October 2016 on all of the sections. During the 2017 thawing period,
three bladings were performed to fix potholes in the test sections, which are shown and discussed
in the survey photo section of this chapter. Based on the maintenance records, it can be
concluded that all of the stabilized sections performed satisfactorily, but the wearing surface
material degraded significantly after three years of service.

3.3 Changes in Thickness and Shear Strength of the Test Sections

The DCP tests were used to estimate the thicknesses of the surface aggregate layers as well as
the CBR values of both the surface aggregate layers and subgrade. These pre-freezing and post-
thawing DCP tests were conducted in November 2016 and April 2017, respectively. All of the
DCP depth profiles are summarized in Appendix A and Appendix B. The average thicknesses of
the surface aggregate layers and weighted-average CBR values of the surface and subgrade
materials are compared in Table 4.
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Table 4. 2016-2017 pre-freezing and post-thawing DCP test results

Section Surface Layer Thickness (in) Weighted-average CBRagg (%) Weighted-average CBRgg (%)

No. Section Name Pre- Post- Change Pre- Post- Change Pre- Post- Change
freezing thawing (Post-Pre) freezing thawing  (Post-Pre) freezing thawing  (Post-Pre)
1A Dirty Macadam 16 17 1 B s [ -18
1B Dirty Macadam + Bentonite 18 18 0 Wira B -65
2 Dirty Macadam + Calcium Chloride 16 18 2 E13.4 I] -6.4
3 Dirty Macadam + Bentonite + Geotextile 14 13 0 : W56 ¥ -93
4 Dirty Macadam + NW geotextile 17 17 0 NA i A ﬂG.S [l -11.6
5  Clean Macadam + NW geotextile 16 15 -1 213 ]:I 103 [ -32
6  Clean Macadam 14 14 0 W97 § 30 -167
7 RPCC Macadam 15 16 1 v Whao [ -30
8  RPCC Macadam + NW geotextile 14 14 1 219.1 El4.0 B -0
9  Control 7 5 -2 16.0 52.5 fhie & 92 [ -23
10 & 11 Control 6 8 1 17.2 316 %17.9 0 46 [ -33
12 Aggregate Columns + Geocomp. Linings 5 5 0 73.8 -234.0 2.1 i1 36 [l -8.4
13 Aggregate Columns 4 4 0 49.9 312 50 & 71 B -80
14 Control 3 3 0 218 -17.5 94 @ 47 [ -a7
15 5% Bentonite 6 5 -1 54.0 -8.7 9.5 ﬂ 6.5 [I -3.0
16  15% Fly Ash 11 11 0 54.3 -15.0 89 N34 § 45
17 6% Cement 12 11 -1 78.1 -23.1 8.0 ﬂ5.6 ﬂ 7.5
18  Geocomposite Drainage Layer 6 6 0 03.7 23.6 8.3 ﬂ?.B [] 9.1
19A BX-Geogrid + NW-Geotextile 10 11 1 11286.3 [5 -106.2 Tis0 Fl o1 [ -49
19B  BX-Geogrid 7 7 0 1200.5 -57.6 Tloo ] 68 [ -4l

NA: CBRagc cannot be determined for the macadam base layers because their nominal aggregate sizes are larger than 2 in.
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Outliers that exhibited significantly different values from other locations within the same test
section were excluded for calculating the average values. The average surface layer thicknesses
in the pre-freezing and post-thawing tests were very close. However, the DCP-measured
thicknesses are 2 to 3 in. thicker than the nominal as-constructed cross-section profiles (Figure
4), possibly due to adding the fresh resurfacing aggregate. Additionally, the differences may be
caused by the test itself, because the stiff top layer of the subgrade usually has similar shear
strength to that of the aggregate material.

For the pre-freezing DCP tests, most sections had very high CBRacc Vvalues greater than 60%,
except for the control section (Section 14). The average CBRagc of the fly ash-stabilized section
was lower than those of the other sections, which indicates that the stabilization effect of the fly
ash significantly degraded after two years of service. The aggregate columns with geocomposite
section (Section 12) and bi-axial geogrid stabilized sections (Sections 19A and 19B) yielded pre-
freezing CBRace Values that were more than twice those of the other sections.

After thawing, most sections did not show significantly lower CBR values due to the relatively
warmer and shorter winter. One exception was the aggregate columns with geocomposite lining
section (Section 12), for which the CBRacc decreased by 234%. This decrease may be a result of
this section being installed next to the drainage tile crossing. Even after the 234% decrease, the
post-thawing CBRacc Of this section was still approximately 50% higher than that of the
aggregate columns without geocomposite liners section (Section 13). For the subgrade, the
CBRsg of the macadam sections generally continued to be higher than those of all other sections
for both the pre-freezing and post-thawing tests, as was found in the TR-664 study. In addition,
the CBRsg of the fly ash, cement, and geocomposite drainage layer sections increased slightly
from the pre-freezing to the post-thawing tests, a trend that was not observed for any other
sections.

3.4 Changes in Stiffness of the Test Sections

The FWD and MASW tests were conducted to determine the stiffness changes of the test
sections.

3.4.1 Falling Weight Deflectometer Test Results

To determine the changes in stiffness of the test sections from the 2014 pre-freezing to the 2017
pre-freezing periods, the FWD test results are compared in Figure 8.
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Figure 8. Comparison of 2014 and 2017 pre-freezing FWD test results

The results show that the 2017 composite modulus (ErFwb-composite), Surface aggregate modulus
(EFwp-acc), and subgrade modulus (Erwp-sc) values are higher than those from the 2014 test
results for most of the test sections. The differences are expected due to the different weather,
moisture, and temperature conditions. In addition, two different FWD devices were used, as
described above, with the impact load applied by the new device reduced to 4,000 lbs from the
lowest impact load (6,000 Ibs) applied by the previous FWD device in order to avoid overloading
the sensors of the new device, which had a smaller measurement range. This reduction in impact
load can result in higher elastic modulus values due to the nonlinear dependence of modulus on
strain level for geomaterials. However, the relative trends of the two groups of test results are
similar from section to section.
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The Erwp-composite Values of the macadam stone-based sections are approximately twice those of
other sections, which is consistent with the findings of the TR-664 study. For the surface
aggregate layer, the Erwp-ace values generally increased between the 2014 and 2017
measurements for most of the sections. However, the fly ash- and cement-treated sections both
exhibited significant modulus reductions in their aggregate layers over the three-year span. The
RPCC macadam sections showed some of the greatest increases in Erwp-ace values among all of
the sections, likely due to continuous hydration of the portland cement, which may be a long-
term benefit of using recycled PCC materials. The dirty macadam sections also showed
significant increases in Erwp-acc values.

The 2016-2017 pre-freezing and post-thawing FWD tests were conducted using the same JILS
FWD device on November 29, 2016 and April 13, 2017, respectively. A heavy rainfall event
occurred one day before the post-thawing FWD test, so the surface materials were very wet and
in a weakened state. The test results are provided in Appendix C and compared using statistical
box plots in Figure 9.
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Figure 9. Comparison of 2016-2017 pre-freezing and post-thawing FWD test results

The FWD test results show very repeatable trends between the two test periods. The
Erwb-composite Values decreased after thawing for most sections, except for the clean macadam
sections (Sections 5 and 6), which remained almost unchanged. Both the surface aggregate layer
Erwp-acc and subgrade Erwp-sc Values generally decreased after the 2016-2017 seasonal freeze-
thaw period. However, compared to the test results of the 2013-2014 and 20142015 seasons,
the reductions are smaller due to the relatively short freezing-thawing periods, shallower frost
penetration depth, and lower levels of precipitation in 2016-2017.

3.4.2 Multichannel Analysis of Surface Waves Test Results

The MASW test is a nondestructive geophysical method for assessing the elastic modulus of
multi-layered soil and pavement systems. In the Phase Il project, the feasibility of using the
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MASW test on granular-surfaced road systems was evaluated and compared to the feasibility of
using the FWD test. The comparison revealed that the MASW test used with recently developed
data analysis methods and a custom-built land streamer was capable of measuring multi-layered
elastic moduli of granular-surfaced road systems (Li et al. 2017a). In the present study, MASW
tests were again conducted for both the pre-freezing and post-thawing conditions. The dispersion
images of the MASW tests are provided in Appendices D and E, and the corresponding pre-
freezing and post-thawing moduli are compared in Figure 10. The surface and subgrade moduli
of the macadam sections experienced much smaller reductions after thawing than the other
sections, and the subgrade moduli of the macadam sections were also generally higher than those
of most other sections.

1200418112 T3l al sl gl 70 gl gliglial 1371415116117 I 18 19108
80 || b R =
11 -
R (T (O 1 N R
T s d [ L e
= 1 Pre-freezing Test (11/29/2016) | | | | | | | | | | | | |
8 400 - 3 Post-thawing Test (4/13/2017) | | | | | ‘_ | | | | | | |
% e e o O A AT O
€O I s M U
T gan ton gl Y TR R
it il A H
100 {=@l © 10mle= 2| Byl Uil H\ LI H L1 TG
(a)Q I = T I B D\ I I N I glﬂﬂ
e e e e
7 L L e e e e e A e N N
T e e e (A R
~ 2090 0 0 0t
2 e o e (e A (O O N
o 161 H = T (O A (R IR
2 U Uat !t it b0
o 12 1
2 (| Hl | H \D I N T .
i A 0 Higme B me cme o @ o g 01
8 ﬂﬁ i H\ | U} | H uf Hﬂ U HH o |H 5 1g ﬂ
O et el B o e O A O | L T
4 |”|DDE|H|H|H|H|H
e L S S S I .. e N N
TR T VIR YRR o Vi o A o A A N o N oW M AN oW N S o NI SR ORI S
Ty Ty Yy Ty Ty /@%6% zooo AOO %, o,)&QQ % %, G”’b 4% @% %, e%)/ . @?% ‘
A A A A A A R B A A A A
EICN ’bxoo)xo @xo%, % W, R ° %,
Q. e X Q 2
"’o,)/ , 6@@% +®°f@+ % o@o, OC‘o,)) °
© ° % % %, ey
8 ® %
@% %
o

Figure 10. Comparison of 2016-2017 pre-freezing and post-thawing MASW test results

In the present study, MASW tests were conducted at the same times and locations as the FWD
tests. The 2016-2017 MASW and FWD test results are compared in Figure 11 through Figure
14,

20



6S
jouo)d
8S
9]11X31089- N +
wepedeN D0dd

LS
wepedseN 00dd

9S

S
9|l1X81099-MN +
wepeoey ues|D

S 9I1X8l08D+
alluoluag-+Wwepede Auig

€S 9]1X31099) +

wepeoe AuIQ
¢s
9puUoIYD +
wepeoep Aug
gisSayuouag + 020« ] o e T
wepeoe Aug
VT Uonoas
wepeoe Auig
Q
o < o B
s 3 £ 3
2 g W w
o =
T T T T T T T T T T T T
o o o o o o o o [To) o o) o To) o
) o) o Te] o n o Irs) N I3 — =
< ™ ™ 3\ « = —

A_WV_V OO<.>>m<_2m 10 OO<VD>>H_M

A_mv_v O,w.>>m<_>_m 10 wm.n_>>u_m_

1500 2000 2500 000 3500 4000 4500 5000

1000

500

Distance from 330" Street (ft)

Figure 11. Comparison of 2016 pre-freezing MASW and FWD test results for the first mile
sections

21



g61S
puboen-xg

9]11X21099-MN
+puboa-xg

81S
19Ae| abeureiq
a)sodwo2099

91S

ST1S
ajuojuag

vis
|jonuod

€IS

Z1Ss
Buiui] *dwooosn
+ suwnjo) b6y

Note: The FWD elastic moduli are calculated under 4000 Ib applied load

The MASW test was not conducted on the Control Section 14.

3 Q
8 2 o 3
< 3 2 =z
TT® 0TS m% mm
= =
|0AU0D W ui W ul
) =
T T 1T 71 T T T T T T T T T
Ocoooo o o o o o o o 0 o o o
SR-R-R-B--R-TR-TE-=! N & - =
OFTNODdD DB I ® W« o
— A A

_mv_v mvmudr>>m<_>_m 10 OO<.0>>u_m

~

A_WV_V mvw.>>m<_>_m 10 mum.n_>>n_m

6000 6500 7000 7500 8000 8500 9000 9500 10000

5500

Distance from 330" Street (ft)

Figure 12. Comparison of 2016 pre-freezing MASW and FWD test results for the second

mile sections

22



6S
[0JJu0D

8S
9[IX81099-MN +
wepedeN 00dyd

LS
wepedeN D0dyd

9S
wepesen ues|d

SS
9|NX31099-MN +
wepeose ues|D
vSemxe0e0+
aluoluag+wepeaey AU

€S 9|11Xa1099) +
|wepeoenNAug
Zs
3pLoIYD +
wepese AUIg
grsonuoeg + <
wepeoe\ Aug

VT UORI8S
wepeoep Aua

£ EFWD-AGG
A EMASW-AGG

<
N—r

Note: The FWD elastic moduli are calculated under 4000 Ib applied load

® EMASW-SG

—0— Erwpss

(b)

T

o
Lo
—

T T T T
o o o o
o Te} o o
™ N N -

400
350 -

A_WV_V mumudr>>w,‘.\_>_m 10 mumui.n_>>n_m

T
o
Te}

25 4

o [To]
N -

A_WV_V Ow.\Swizm 10

o
—

OS-amd

3

1000 1500 2000 2500 3000 3500 4000 4500 5000

500

Distance from 330" Street (ft)

Figure 13. Comparison of 2017 post-thawing MASW and FWD test results for the first mile
sections

23



1000

ES IRE LB Exl £, 0§ 1 5. lgm 1x2 IR
c c c s o bl o8 =40 ISEe
wi 35 B33 50 0Bl e | 8P R HieE
—_ o =n ) oM Oon g8vw HO®» X
2 600 - 9 g | g g5 Ix3 I
e 188 | < | [ 8 | | 0o |0z |
b Epupnos | O 1 V\ | | | I
3 100 A Evswace | o | | A | o
S { \ { [ { \ | \ [
e | . | | | ]
g 2997 | s | | | | | |
2 | | | | | o
z { [ { | \ {
W 100 - { { { \ \ {
[ [ | |
a | [
(@) | | | |
{ Note: The FWD elastic moduli are calculated under 4000 Ib applied load {
25 - { | { [ { | | | {
= —0— Erupss || | [ [ | | | \ [
é), 20 _ —0— EMASW-SG [ ‘ [ [ [ ‘ ‘ ‘ [
| o | | | | | |
z [ | [ [ [ | | | {
: 15 | o | | | | o
o | I | | | | | |
A | BN | | | | ]
S 10 A [ [ | [
£ | | | |
[ [ {
|
0 (b) T T [ T ‘ [l [ T [ T I‘ T ‘ T ‘ I[
5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

Distance from 330" Street (ft)

Figure 14. Comparison of 2017 post-thawing MASW and FWD test results for the second
mile sections

As Figure 11 through Figure 14 show, in the TR-664 study the subgrade modulus values
determined using the MASW test showed significantly greater variation than those of the FWD
test. However, in the present study the two different testing methods show very similar trends for
both the surface and subgrade materials.

For the surface aggregate layers, the MASW modulus values are much higher than those
obtained from the FWD test, as is expected due to the lower strain levels induced in the MASW
test. However, the MASW subgrade modulus values are of similar magnitude but overall slightly
lower than those obtained from the FWD test, possibly due to the different measurement
influence depths of the testing methods. Further study is being conducted to verify this
hypothesis.
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3.5 Survey Photos of the Test Sections

To monitor the surface conditions and performance of the test sections, survey photographs were
taken during the 2015-2016 and 20162017 seasonal freeze-thaw periods. One group of survey
photos taken on February 19, 2016 shows that the aggregate columns, fly ash- and cement-
stabilized, and geosynthetic sections performed very well during the 2016 thawing period, while
significant rutting and frost boils were observed for the control sections (Figure 15). All of the
macadam stone-based sections on the first mile of test sections showed no surface damage, but
survey photos were not taken at the time.

S10&11 S s13
Control Agg. Columns + G.C. Lining Agg. Columns

S 16
Fly Ash (missed) it
looked about the
same as the cement
5 section
S14 7 ¢ S15
Control = = Bentonite

=~ p—

=

7

S 17 S 18 S 19A
Cement : Geocomposite Geogrid + Geotextile

- | I rre—
p— .

S 19B > - Control
BX-Geogrid - Intersection of 310™

Figure 15. Survey photos of Sections 10 through 20 taken on February 19, 2016
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For the 20162017 freeze-thaw period, a total of four groups of survey photos was taken. The
pre-freezing surface conditions of the test sections are shown in Figure 16 and Figure 17. All
sections performed well at the time, though a few potholes were observed in control Section 11.
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S9 Control S10 & 11 Control G.C. Lining

S13 Agg. Columns S14 Control S15 Bentonite

Figure 16. Survey photos of Sections 1A through 15 taken on November 21, 2016
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S16 Fly Ash S17 Cement S18 Geocomposite

S19A Geogrid + Geotextile S19B Geogrid

Figure 17. Survey photos of Sections 16 through 19B taken on November 21, 2016

During the 2017 thawing period, the test sections performed very differently, as shown in Figure
18 and Figure 19.

S1B Dirty Macadam + S2 Dirty Macadam +
Bentonite Chloride

S4 Dirty Macadam + S5 Clean Macadam +
S3 Dirty Macadam + Geotextile Geotextile + Bentonite Geotextile

Figure 18. Survey photos of test Sections 1A through 5 taken on February 1, 2017
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S7 RPCC Macadam Geotextile

S9 Control S10 & 11 Control S12 Agg. Columns + G.C. Lining

Drainage
pipe 9
S12 Agg. Columns + G.C. Lining

S13 Agg. Columns S14 Contro

~.

S15 Bentonite S16 Fly Ash S17 Cement

T

S18 Geocomposite S19A Geogrid + Geotextile S19B Geogrid

Figure 19. Survey photos of Sections 6 through 19B taken on February 1, 2017

The macadam stone-based sections (Sections 1A through 8) on the first mile showed almost no
surface damage, but significant rutting and frost boils were observed in the control sections. The
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cement and fly ash sections had minor rutting near the shoulders, and the bentonite section had a
muddy surface and minor rutting. The first survey photo in the third row of Figure 19 also clearly
demonstrates that aggregate columns with geocomposite liners are a very cost-effective solution
for frost boils, evidenced by the state of the control section on the other side of the tile crossing.

Survey photos taken on March 19, 2017 show that all of the sections performed well except for
the chloride-treated dirty macadam section (Section 2), which yielded more potholes than other
sections, as shown in Figure 20 and Figure 21. Similar behaviors were observed during the
2014-2015 thawing period, as documented in the TR-664 project report.

S1A Dirty Macadam S1B Dirty Macadam + Bentonite S2 Dirty Macadam + Chloride
" % ..--"- 'v'" g r"w‘ﬁ "“
!

1

S4 Dirty Macadam +

S3 Dirty Macadam + Geotextile Geotextile + Bentonite S5 Clean Macadam + Geotextile
e e o L

ra

S6 Clean Macadam S7'"RPCC Macadam S8 RPCC Macadam +
— - v S AasEe i e A

S12 Agg. Columns + G.C.
S9 Control S10 & 11 Control Lining -

Figure 20. Survey photos of Sections 1A through 12 taken on March 19, 2017
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S14 Control

S15 Bentonite

S16 Fly Ash , S17 Cement S18 Geocomposite

S19A Geogrid + Geotextile S19B Geogrid

Figure 21. Survey photos of Sections 13 through 19B taken on March 19, 2017

Another group of survey photos was taken during the post-thawing field tests in April 2017
(Figure 22 and Figure 23).
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Figure 22. Survey photos of Sections 1A through 12 taken on April 8, 2017
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S13 Agg. Columns S14 Control S15 Bentonite

= e A

e

S16 Fly Ash - S17 Cement S18 Geocomposite

S19A Geogrid + Geotextile S19B Geogrid

Figure 23. Survey photos of Sections 13 through 19B taken on April 8, 2017

Many potholes appeared in the macadam stone-based and chemically stabilized sections; these
potholes were not observed in the 2014 and 2015 thawing periods. However, the shear strength
and stiffness of the base materials of these sections were much higher than those of other
sections. Therefore, the formation of potholes may be attributable to the gradation and quality of
the new surfacing material and the non-uniform stiffness of the base materials. Further study is
needed to better understand the mechanism of pothole formation in these sections.
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CHAPTER 4. CONCLUSIONS AND RECOMMENDATIONS

In this project, the Vail Avenue rural surface alternatives demonstration sections were
continuously monitored during the 2016-2017 seasonal freeze-thaw period. The weather and
subgrade temperature profile were recorded and analyzed to determine the timing, duration, and
depth of soil freezing. Compared to the 2013-2014 and 2014-2015 seasons, the winter of 2016—
2017 was warmer and had shorter freezing and thawing periods (74 and 8 days, respectively),
which resulted in a much shallower frost penetration depth of approximately 2.25 ft.

Performance-based field tests were conducted on the test sections before and after the seasonal
freeze-thaw period. The thicknesses of the surface layers based on DCP tests were 2 to 3 in.
thicker than the nominal as-constructed cross-section profiles. The difference might be due to
adding the fresh resurfacing aggregate and the DCP test itself, because the stiff top layer of the
subgrade usually has a shear strength that is similar to that of the aggregate material. The DCP
test results showed that the surface layer thicknesses remained unchanged between the 2016 pre-
freezing and 2017 post-thawing tests. The DCP-CBR values of the stabilized surface layers were
above 60% before freezing, but the average CBRacc Of the fly ash-stabilized section
significantly decreased after two years of service. After thawing, the CBR values of most
sections did not decrease significantly because of the relatively warmer and shorter winter. The
subgrade CBR values of the macadam sections were about twice those of the other sections for
both pre-freezing and post-thawing tests.

The FWD tests were conducted to determine the stiffness changes of the test sections and
compare the FWD values to those obtained from previous test results. In this study, a different
FWD device was used, and the applied impact load was 2,000 Ibs less than that of the previous
lowest impact load of the Kuab FWD device. The data showed that the 2016 pre-freezing FWD
modulus values were higher than those obtained from the 2014 tests, except for the fly ash- and
cement-treated sections, which exhibited significant reductions in stiffness after two years of
service. For the 2016 pre-freezing tests, the stiffnesses of the macadam sections were still
approximately twice those of the other sections. The dirty macadam with bentonite surface
treatment and RPCC macadam sections yielded some of the highest average surface modulus
values, likely due to the improved surface stability and continuous hydration of the recycled
concrete material, respectively. The 2016-2017 pre-freezing and post-thawing FWD test results
showed that the stiffness of most sections decreased after thawing, except for the clean macadam
sections (Sections 5 and 6), whose stiffnesses remained almost constant. Compared to the 2013—
2014 and 20142015 test results, the stiffness reductions were smaller due to the relatively short
freezing-thawing periods, shallower frost penetration depth, and lower levels of precipitation
during the 2017 thawing period.

The MASW test results showed trends that were very similar to those of the FWD test results.
The MASW surface modulus values were much higher than those obtained from the FWD tests
due to the much lower strain level imposed by the MASW test. For the subgrade, the MASW
tests produced similar but somewhat lower modulus values than the FWD tests. This discrepancy
can be caused by several factors and needs further study.
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Maintenance activities and costs were recorded by the Hamilton County Secondary Roads
Department. Except for a total of 640 tons of rock that was dumped to resurface the entire two-
mile stretch of test sections, very few routine motor grader bladings were performed on the
sections. Based on the additional maintenance cost data, the break-even periods of the various
stabilization methods were recalculated and were found to be approximately the same as those
calculated in the TR-664 project.

Survey photos taken during the 20162017 seasonal freeze-thaw periods showed that all of the
stabilized sections had much less rutting than the control sections during the thawing period.
However, many potholes that were not observed in the 2014 and 2015 thawing periods appeared
on the macadam stone-based and chemically stabilized sections. In addition, the shear strength
and stiffness of the base materials of these sections were much higher than those of other
sections. Therefore, the formation of potholes may be attributable to the gradation and quality of
the new surfacing material and the non-uniform stiffness of the base materials. Further study is
needed to better understand the mechanism of pothole formation in these sections.
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APPENDIX A. 2016 PRE-FREEZING DCP TEST RESULTS
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Figure 24. 2016 pre-freezing DCP test results for Sections 1A through 8
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Figure 27. 2016 pre-freezing DCP test results for Sections 16 through 18
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Figure 28. 2016 pre-freezing DCP test results for Sections 19A and 19B
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APPENDIX B. 2017 POST-THAWING DCP TEST RESULTS
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Figure 29. 2017 post-thawing DCP test results for Sections 1A through 2
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Figure 30. 2017 post-thawing DCP test results for Sections 3 through 5
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Figure 31. 2017 post-thawing DCP test results for Sections 6 through 8
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Figure 32. 2017 post-thawing DCP test results for Sections 9 through 12
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Figure 33. 2017 post-thawing DCP test results for Sections 13 through 15
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Figure 34. 2017 post-thawing DCP test results for Sections 16 through 18
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Figure 35. 2017 post-thawing DCP test results for Sections 19A and 19B
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APPENDIX C. 2016-2017 FWD TEST RESULTS
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APPENDIX D. 2016 PRE-FREEZING MASW DISPERSION IMAGES
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Section 1B Dirty Macadam + Bentonite
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Section 3 Dirty Macadam + Bentonite + NW geotextile
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Section 5 Clean Macadam + NW geotextile
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Section 7 RPCC Macadam
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Section 8 RPCC Macadam + NW geotextile

1 1 1 1 L _ 1 1 L
a0 180 210 270 330 390 450 510 570
Frequency (Hz)

[y
=

400 -
280} et
430} 350+

325

380} 7 30}

E 3} E a5t

= ~ 2 250+

£y 5 251

il = omt

S H0 &

T T 180+
130+ 125 F
| 100

75+
0L | n 50k

n n n n n
7n 110 150 190 230 270
Freguency (Hz)

w
[=]

50 a0 130 170 210 250 280 330 370
Fragquency (Hz)

|0+
IBEL
@0+
_3sr
801
=51
[0+
5 205
> 180t
185
130
105
BOF
g5t
0k

=

H A | S s

FPhase velocity (m/s

w
=]
~
=)
o

150 180 230 270
Frequency (Hz)

w
o

59



Section 9 Control
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Section 12 Aggregate Columns + Geocomposite Linings
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Section 15 Bentonite
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Section 17 Cement
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Section 18 Geocomposite Drainage Layer
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Section 19A BX-Geogrid + NW-Geotextile
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APPENDIX E. 2017 POST-THAWING MASW DISPERSION IMAGES
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Section 1B Dirty Macadam + Bentonite
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Section 3 Dirty Macadam + Bentonite + NW geotextile
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Section 4 Dirty Macadam + NW geotextile
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Section 5 Clean Macadam + NW geotextile
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Section 7 RPCC Macadam
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Section 9 Control
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Section 12 Aggregate Columns + Geocomposite Linings
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Section 14 Control
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Section 16 Fly Ash
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Section 18 Geocomposite Drainage Layer
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Section 19A BX-Geogrid + NW-Geotextile
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Section 19B BX-Geogrid
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