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EXECUTIVE SUMMARY 

Background and Problem Statement 

Bridges play a critical role in transportation infrastructure, providing essential connections for 
economic and social activities. Due to constant exposure to environmental stressors, traffic loads, 
and natural wear, bridges are vulnerable to deterioration, including the development of cracks, 
corrosion, spalling, and other structural defects. Effective and timely inspection of bridges is 
crucial for ensuring safety, extending bridge lifespans, and preventing catastrophic failures. 
Traditional inspection methods, which often involve manual visual assessments, can be time-
consuming, labor-intensive, and prone to human error. These limitations necessitate more 
advanced, reliable, and efficient techniques for bridge inspection and maintenance. Recent 
technological advancements, particularly in the fields of unmanned aerial vehicles (UAVs), 
artificial intelligence (AI), and machine learning (ML), offer promising solutions to the 
challenges posed by traditional inspection methods. UAVs, commonly known as drones, provide 
the ability to capture high-resolution images of bridge structures from various angles and 
distances, making them an invaluable tool for structural health monitoring. When combined with 
AI and ML algorithms, these images can be analyzed to detect and quantify structural defects 
with greater precision and efficiency than manual inspections. 

Research Description  

This research project developed advanced models for detecting and quantifying structural defects 
in bridge infrastructure using UAVs and machine learning algorithms. The primary objective 
was to enhance the accuracy and efficiency of structural inspections by integrating drone 
technology for image capture and AI-based detection models for analysis. To ensure 
comprehensive data coverage, high-resolution images of bridge components were collected using 
UAVs operating at various distances and angles. The captured images were then processed 
through a custom-developed convolutional neural network (CNN) to detect critical defects such 
as cracks and spalling. The model’s performance was assessed through multiple case studies, and 
its ability to detect and quantify defects under different conditions was validated against field 
data. This approach yielded significant improvements over traditional bridge inspection methods 
in terms of the precision with which structural vulnerabilities were identified and provided 
accurate quantification of defect dimensions. 

Furthermore, the research incorporated the development of three-dimensional (3D) models of 
bridge structures using software such as Bentley iTwin Capture, Pix4D, and Autodesk ReCap 
Pro. These 3D models enabled detailed structural assessments and laid a foundation for 
predictive maintenance strategies. The results demonstrated the potential of UAV-based 
inspections combined with AI-powered detection models to revolutionize bridge inspection 
practices, offering a more reliable, efficient, and cost-effective approach to infrastructure 
maintenance.  



xii 

Key Findings  

• The developed model, integrating UAV technology with ML/AI algorithms, demonstrated 
significant improvements over traditional bridge inspection methods in the detection of 
structural defects such as cracks and spalling. The developed models were particularly 
effective in identifying fine cracks and distinguishing them from natural concrete 
segmentation lines. Their accuracy was validated by comparing the predictions with field 
data, which resulted in a low margin of error and demonstrated the reliability of the 
developed framework as a tool for bridge inspections. 

• The research highlighted the importance of optimal drone positioning during image capture. 
Drones operated at closer distances provided more detailed and accurate images, which 
enhanced the model’s ability to detect smaller defects. Conversely, greater distances, though 
useful for capturing the overall structure, led to lower detail in defect detection. This finding 
emphasizes the need to balance safety and detail when conducting aerial inspections. 

The study successfully integrated high-resolution drone imagery into 3D modeling software, 
such as Bentley iTwin Capture and Pix4D, to generate detailed models of bridge structures. 
These models enabled comprehensive structural assessments and allowed for the quantification 
of detected defects. The use of these models can facilitate predictive maintenance strategies, 
supporting more informed decision-making for infrastructure safety and longevity. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

The task of inspecting and detecting damage in bridges has traditionally been a challenging 
aspect of civil infrastructure management. Historically, these duties have primarily been 
executed manually, often involving physical attendance by the inspector. This conventional 
approach presents various obstacles to inspection, such as the lack of accessibility to difficult/far 
areas, safety risks for inspectors, and the time-consuming nature of the whole process. The need 
for routine inspections to ensure structural integrity and public safety further compounds these 
obstacles. Moreover, the regular inspection process could be influenced by subjective judgments 
and varying environmental conditions, potentially affecting the consistency and reliability of the 
assessments. 

The introduction of drone technology marked a significant enhancement and shift in this field. 
Unmanned aerial vehicles (UAVs), or drones, have rapidly spread and developed, offering 
innovative solutions to the limitations and challenges of regular inspection processes. With 
advanced sensors and high-quality cameras, drones can easily access hard-to-reach areas and 
provide more detailed images and data for assessing the condition of bridge components. This 
technology enhances safety by reducing the need for inspectors’ direct involvement in risky and 
unreachable areas, which enables a more comprehensive and less intrusive inspection process. 
The mobility of drones has thus positioned them as a valuable tool for bridge inspections. 

Integrating artificial intelligence (AI) and machine learning (ML) in data analysis is the final step 
in automating bridge inspections. AI and ML algorithms are adept at processing a massive 
amount of complex data, such as the imagery and sensor readings collected by phones, satellites, 
or drones. These technologies can detect damage, patterns, and potential structural issues more 
accurately and rapidly than inspector analysis. The ability of AI to learn and improve over time 
and with more training means that the system becomes more efficient and accurate with each 
inspection. 

1.2 Research Objectives 

The study aimed to leverage and identify opportunities to adopt UAVs to enhance the damage 
detection, inspection, and three-dimensional (3D) modeling of bridge infrastructure, thereby 
benefiting the department of transportation (DOT) and digital construction sectors. Additional 
objectives of the study included the following: 

• Development of an integrated system. The primary goal of this research was to develop a 
comprehensive and integrated system that combines drone technology with advanced AI and 
ML algorithms. The system resulting from this research was designed specifically for the 
inspection of bridge structures and the detection of damage. By leveraging the capabilities of 
drones for data collection and AI/ML for data analysis, the system provided a more efficient 
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and accurate solution compared to traditional bridge inspection methods, ensuring the timely 
identification of structural issues and enhancing the overall reliability of inspections. 

• Accuracy and efficiency in damage detection. A key aim of this study was to significantly 
improve the accuracy and speed with which structural defects and potential issues within 
bridge structures are identified. Traditional inspection methods are often time-consuming and 
prone to human error. By utilizing automated systems driven by AI and ML, the outcome of 
this research helped detect and classify defects with higher precision while greatly reducing 
the time required for inspections. This enhanced accuracy and efficiency allowed for quicker 
identification of critical issues, ultimately contributing to improved safety and maintenance 
practices. 

• Predictive maintenance and decision-making. Another essential objective was to enable 
predictive maintenance and support informed decision-making through continuous data 
analysis over time. By monitoring changes in the structural health of bridges, this system 
showed promise to forecast potential deterioration before it reaches critical levels. This 
predictive approach will not only extend the lifespan of bridges but also reduce maintenance 
costs and ensure that interventions are planned proactively, thereby minimizing the risks 
associated with unexpected structural failures. 

1.3 Research Benefits  

Incorporating drone technology with AI and ML for bridge inspections offers many benefits, 
such as improving the efficiency and accuracy of damage detection. By utilizing drones, the need 
for manual, physically demanding inspections will be highly reduced, lowering the risk of 
accidents and ensuring the safety of inspectors. This approach is also far more cost-effective than 
traditional inspection methods, decreasing labor costs and the time needed for routine inspections 
through fast, detailed, and comprehensive data processing and analysis.  

The developed system’s AI and ML component allows for advanced data processing and the 
identification of structural defects and potential issues with precision and speed unattainable by 
traditional methods. This will not only control the inspection process but also enable predictive 
maintenance, allowing for the early detection and rectification of problems ultimately extending 
the lifespan of bridges.  

Finally, the data-driven nature of this technology supported informed decision-making, providing 
a robust foundation for infrastructure management and planning. This innovative method can 
revolutionize bridge maintenance, ensuring safer and more reliable infrastructure across varied 
environments and conditions. 
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CHAPTER 2: DAMAGE DETECTION ALGORITHMS AND TECHNOLOGIES 

2.1 Overview 

Maintaining the functionality of bridge structures is critical to ensuring public safety and 
avoiding costly repairs and closures. Over time, bridges can suffer from various forms of damage 
that compromise their structural integrity and performance. Therefore, the detection and 
quantification of damage in a timely and cost-effective manner is of great importance for the 
management of transportation networks.  

Traditionally, bridge components are evaluated through visual inspections, during which 
engineers in charge physically inspect the component(s) of concern. Visual inspections involve 
meticulous scrutiny by human inspectors to detect signs of deterioration and damage. This time-
consuming practice primarily relies on the inspector’s expertise to identify anomalies as much as 
access permits. Nevertheless, direct inspections involve inherent limitations that affect their 
accuracy and efficiency (Mirzazade et al. 2022).  

Subjectivity in human interpretation introduces inconsistencies in damage identification and 
categorization, potentially affecting condition assessment and rating. For instance, in detecting 
hairline cracks or subsurface defects that are often missed by visual inspections, AI models 
trained on large datasets can identify patterns and anomalies that are not easily discernible to the 
human eye. A case study involving the inspection of a concrete bridge deck showed that an AI-
based crack detection model identified 30% more microcracks than a team of experienced 
inspectors, highlighting the technology’s enhanced sensitivity and precision (Saseethar and 
Narkhede 2024). Meanwhile, adverse environmental conditions, such as poor lighting, can 
similarly reduce the accuracy of evaluations by human inspectors. 

Difficulties in access to certain bridge elements, such as those at high elevations or submerged in 
water, can also hamper thorough examinations. For example, an underwater inspection using 
autonomous underwater vehicles (UUVs) equipped with AI-based sonar imaging can safely and 
effectively identify structural issues in submerged bridge components, an area traditionally 
difficult and dangerous for divers to access (Ioannou et al. 2024).  

The outlined constraints underscore the need for innovative strategies, such as capturing images 
using drones and processing them through AI and ML algorithms, to enhance accuracy, 
efficiency, and objectivity in bridge condition assessment (Ayele et al. 2020, Kebig et al. 2021). 
In particular, advancements in AI/ML have introduced the potential to transform how bridge 
structures are inspected and evaluated. Automated inspections can also generate vast amounts of 
data that can be analyzed to identify trends, prioritize maintenance, and optimize inspection 
intervals. 

The structural integrity of bridges is crucial for ensuring public safety and infrastructure 
longevity. Figure 2.1 depicts the prevalence of cracks in bridge components.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.1. Examples of cracks in bridge components: (a) abutment, (b) concrete girder, (c) 
pier, (d) steel girder, (e) deck, and (f) column 

Figure 2.2 provides a comprehensive view of the diverse types of damage observed in these 
critical structures, emphasizing the multifaceted challenges engineers and maintenance teams 
must address to mitigate risks and uphold the resilience of bridge infrastructure. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 2.2. Examples of other types of damage observed in bridge components: (a) concrete 
spalling, (b) efflorescence, (c) girder corrosion, (d) galvanic corrosion in bolts, (e) rebar 

exposure, (f) rebar corrosion, (g) concrete column spalling, (h) bed corrosion, (i) concrete 
discoloration, and (j) concrete delamination 
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Bridge structures are commonly prone to a wide variety of damage types. Table 2.1 compiles 
various types of damage that are investigated in the available literature, while Figure 2.3 presents 
the percentage frequencies of damage that are discussed in the literature.  

Table 2.1. Main damage types investigated in the available literature 
Damage Type References 

Crack Kun et al. 2022, Perry et al. 2022, Seo et al. 2022, Mir et al. 2022, 
Munawar et al. 2022, Jeong et al. 2022, Mirzazade et al. 2022, 
Guo et al. 2021, Savino and Tondolo 2021, Montaggioli et al. 
2021, Qin et al. 2021, Chun et al. 2021, Kim et al. 2021, Fan 
2021, Deng et al. 2021, Quqa et al. 2022, Yang et al. 2020, 
Abdelkader et al. 2020, Li et al. 2020, Kong et al. 2020, Liu and 
El-Gohary 2020, Perry et al. 2020, Arong et al. 2020, Bhowmick 
et al. 2020, Zhu et al. 2020, Zhou et al. 2019, Morgenthal et al. 
2019, Song et al. 2019, Medhi et al. 2019, Elbeheri and Zayed 
2018, Gulgec et al. 2019, Modarres et al. 2018, Seo et al. 2018, 
Reagan et al. 2017, Khaloo et al. 2018, Cha and Choi 2017, 
Aliakbar et al. 2016, Miyamoto et al. 2014, Miyamoto 2013, 
Kusunose et al. 2003, Liu and Gao 2022, Meng et al. 2022, 
Malek et al. 2022, Zhai et al. 2022 

Corrosion, rust, and coating 
erosion 

Chun et al. 2021, Elbeheri and Zayed 2018, Arong et al. 2020, 
Bianchi et al. 2022, Munawar et al. 2022, Jeong et al. 2022, Arong 
et al. 2020 

Spalling and peeling Seo et al. 2022, Jeong et al. 2022, Chun et al. 2021, Fan 2021, 
Arong et al. 2020, Zhu et al. 2020, Elbeheri and Zayed 2018, 
Galdelli et al. 2022 

Exposed reinforcing bars; 
uncovered/oxidized metal bar 

Chun et al. 2021, Arong et al. 2020, Zhu et al. 2020, Fan 2021, 
Belcore et al. 2022 

Expansion joints damage Kim et al. 2021, Reagan et al. 2017, Chun et al. 2021 
Connection damage; loose bolt; 
fracture of steel bolts; failure of 
joint; moisture-related damage at 
joints 

Reagan et al. 2017, Reagan et al. 2017, Zhou et al. 2019, Chun et 
al. 2021, Arong et al. 2020, Seo et al. 2018 

Water leakage; water damage 
caused by water coming from the 
deck; drainage issues  

Arong et al. 2020, Chun et al. 2021, Seo et al. 2018, Belcore et al. 
2022 

Efflorescence; free lime Arong et al. 2020, Chun et al. 2021, Jeong et al. 2022, Fan 2021 
Weathering of wood Seo et al. 2022 
Discoloration Jeong et al. 2022, Seo et al. 2018, Galdelli et al. 2022, Chun et al. 

2021 
Floating Arong et al. 2020 
Exposed anchorage zone Arong et al. 2020 
Damaged truss chord Reagan et al. 2017 
Prestressing of fix section Arong et al. 2020 
Displacement and frequency 
responses 

Medhi et al. 2019, Chun et al. 2021 

Delamination Savino and Tondolo 2021, Chun et al. 2021 
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Figure 2.3. Percentage of studies dedicated to each damage type in the current literature 

As mentioned above, the types of damage observed in bridges varies depending on the 
mechanical and environmental stressors they are exposed to (Shafei et al. 2012, 2013). 
Mechanical stressors originating from traffic loads and dynamic forces can induce structural 
fatigue, excessive deformation, and cracking (Alipour and Shafei 2016a, Alipour and Shafei 
2016b, Alipour and Shafei 2022, Shi et al. 2020, Aldemir and Turer 2021). On the other hand, 
environmental stressors, such as temperature, moisture, freeze-thaw cycles, and exposure to 
aggressive chemicals, can initiate steel corrosion, crack formation, and concrete spalling (Chen 
et al. 2018, Tran et al. 2020, Shi et al. 2020).  

To ensure that bridge components meet the expected strength and serviceability requirements, 
regular condition assessments are devised (Khatami et al. 2016, 2021, 2023). Such assessments 
include detecting and quantifying the extent of damage to the bridge structure (Kulkarni and 
Shafei 2018, Zhang and Yuen 2022, Azad and Shafei 2025). This is a crucial task for various 
transportation agencies, as damage can accumulate over time and cause sudden failure if it 
remains undetected. The collapse of the Silver Bridge over the Ohio River in 1967, which was 
attributed to hidden corrosion in suspension chain links, serves as a stark reminder of the 
consequences of overlooked deterioration. More than half a century later, the failure of the 
Morandi Bridge in Genoa, Italy, in 2018, was found to be due to a combination of factors, 
including corrosion and faulty concrete, which had not been detected through regular inspections 
(Piscitelli et al. 2020). Most recently, the Tretten Bridge, a 10-year-old wooden road bridge in 
southern Norway, collapsed and fell into the river in August 2022 due to a block shear failure at 
the junction between the wooden and steel/dowel components. The referenced bridge was 
subject to a thorough inspection in 2021 and a rapid inspection in June 2022 with no faults 
reported. The consequences of bridge failures illustrate the critical need for advanced inspection 
strategies that address the limitations of traditional visual assessments. Furthermore, the early 
detection and repair of defects can significantly help reduce direct and indirect costs while 
extending the service life of bridges (Malekloo et al. 2021). 
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To improve the efficiency and accuracy of damage detection, visual inspection techniques are 
often paired with nondestructive evaluation (NDE) methods. NDE represents a suite of methods 
designed to assess the integrity and health of structural materials and systems without causing 
any physical damage or disruption to their functionality. These methods are capable of finding 
hidden defects, anomalies, and signs of deterioration that may not be detected during visual 
inspections. NDE methods encompass diverse approaches, such as ultrasonic testing (Zhang et 
al. 2023), impact echo testing (Hafiz et al. 2022), ground-penetrating radar (Zhang et al. 2023), 
infrared thermography (Sakagami et al. 2014), radiographic testing (Uesaka et al. 2018), eddy 
current testing (Ichinose et al. 2007), and acoustic emission testing (Nair and Cai 2010). NDE 
methods, however, often require specialized skills and equipment, which can impose constraints 
on how large-scale civil infrastructure, such as bridges, can be scanned in real-world 
applications.  

With imaging technologies and AI/ML algorithms, new capabilities have emerged for bridge 
damage detection. In particular, image-based inspection has received growing attention, as it 
provides a visual representation of the bridge structure, facilitating the process of identifying and 
quantifying damage (Qiao et al. 2021). Various strategies can be used to collect high-quality 
images from bridges, including the use of cameras by human inspectors, UAVs, and UUVs 
(Jeong et al. 2022, Perry et al. 2020, Kun et al. 2022). Despite the benefits introduced by using 
high-resolution cameras, which can capture several thousands to millions of images from bridge 
components, real advantages to the bridge industry remain limited without methods in place for 
automated damage detection and quantification.  

To address this gap, AI/ML algorithms have been rapidly developed in recent years to 
automatically identify and classify different types of damage (Dipankar and Suman 2023, Ai et 
al. 2023). With proper training, such algorithms have proved to be promising in making the 
condition assessment process more accurate and efficient, especially by reducing the risk of 
human error. The available algorithms span various deep learning algorithms, such as 
convolutional neural networks (CNNs) (Pantoja-Rosero et al. 2022, Qin et al. 2021), support 
vector machines (SVMs) (Arong et al. 2020, Fan 2021), random forests (Belcore et al. 2022), 
and decision trees (Allah Bukhsh et al. 2020, Naser 2021). While the listed algorithms offer 
several features, there are certain tradeoffs in their computational efficiency, accuracy, and ease 
of implementation. Hence, choosing appropriate algorithms that can meet the damage detection 
and assessment needs of bridge inspections is often a critical task, requiring significant AI/ML 
experience. Given that most bridge engineers and inspectors do not have a computer vision 
background, there is a need for comparative studies to systematically evaluate and recommend 
the algorithms of choice for a variety of bridge assessment tasks. 

Considering the outlined questions and gaps, this literature review first provides a detailed 
perspective on the types of damage that can be automatically detected in bridge structures. The 
damage types span from surface cracks, which are frequently investigated, to those deemed as 
signs of abnormal conditions. The literature review then discusses how the identified damage 
types can be assessed not only qualitatively but also quantitatively. This is critical to ensure that 
the outputs of advanced damage detection strategies are guided to deliver what is needed for 
real-world bridge maintenance and management (Section 2.2). With the wealth of information 
obtained, image-based data collection techniques are investigated. Given that recorded images 
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are often the inputs for AI/ML algorithms, the properties expected from image databases, in 
terms of resolution, number, and quality, are examined (Section 2.3). After determining the 
necessary inputs, the applications of various AI/ML algorithms are explored. This is one of the 
unique contributions of the current study, as it establishes not only input and output requirements 
but also algorithms appropriate for damage detection and quantification in each of the main 
bridge components (Section 2.4). This section also includes a rigorous assessment of the 
advantages and limitations of various AI/ML algorithms employed to date. The literature review 
concludes with a set of recommendations covering data collection, preprocessing, feature 
extraction, model selection, and prediction validation (Section 2.5). The outcome serves as a 
holistic reference for researchers and practitioners not only in the bridge engineering domain but 
also in other engineering domains that can equally benefit from a transition from traditional to 
new inspection and condition assessment strategies. 

2.2 Bridge Damage Types and Characteristics 

Bridge structures are prone to damage from two broad categories of causes: (1) damage due to 
sudden extreme events, such as earthquakes and vehicle/vessel collisions, and (2) damage due to 
continuous deterioration processes, such as corrosion and fatigue. Despite the importance of both 
categories, this study’s investigations are mainly focused on the instances of damage incurred by 
the latter category of causes, while the findings remain applicable to the former category of 
causes as well. Various measurements and units have been used to express damage both 
qualitatively and quantitatively for the condition assessment of bridges. Features, including 
color, texture, and size, are widely used to classify various types of damage, such as cracking, 
rust, and peeling paint.  

Among the most common damage types is the formation and propagation of cracks. This has 
been explored by a number of AI/ML-related research studies, including Li et al. (2020), Yang et 
al. (2020), Wang et al. (2020), Adel et al. (2021), Deng et al. (2021), Guo et al. (2021), 
Montaggioli et al. (2021), Qin et al. (2021), Savino and Tondolo (2021), Galdelli et al. (2022), 
Mir et al. (2022), Mirzazade et al. (2022), Perry et al. (2020 and 2022), Quqa et al. (2022), and 
Zhai et al. (2022). Crack detection models in the cited studies cover various sizes, patterns, and 
types of cracks in different materials. For example, in steel components, cracks can be a result of 
imperfections in welded connections, fatigue due to repetitive traffic loads, or corrosion caused 
by environmental stressors (Quqa et al. 2022). On the other hand, cracks in concrete components 
can be due to a completely different set of causes, including curing issues, shrinkage and creep, 
temperature fluctuations, and freeze-thaw cycles. Such a variety has required the detection 
models to capture cracks with a width of 1 mm (or even less), depending on the components of 
interest and their serviceability requirements. 

In Adel et al. (2021), pits were defined as small concrete fragments that fall out of cracks formed 
in reinforced concrete (RC) deck slabs subjected to moving wheel loads. The referenced study 
explored the detection of pits along with surface cracks. In Perry et al. (2020), structural defects, 
such as cracking and spalling, were detected, and the defect width and area were quantified. 
Perry et al. (2022) transformed the pixel information of cracks identified in images into a 
Cartesian coordinate system to find crack dimensions through measuring the length of 



 10 

corresponding line segments. Galdelli et al. (2022) identified defects, such as holes, bumps, and 
color variations, by pixel detection. The outputs were a set of regions and bounding boxes 
capturing the expected locations of defects. In Savino and Tondolo (2021), a deep learning-based 
algorithm was employed to classify exterior concrete surfaces into undamaged, cracked, and 
delaminated surfaces. Relevant details used for delaminated surfaces included the oxide color, 
texture of aggregates, and width and depth of cracks. The referenced study primarily established 
the classification but did not measure the extent of damage further. 

Morgenthal et al. (2019) presented a framework for automated crack detection in concrete 
structures using an unmanned aircraft system. This study captured the continuous path of cracks 
with different widths and angles. Similarly, Bhowmick et al. (2020) proposed a computer vision-
based framework to utilize a set of high-quality images of randomly selected cracks to train the 
necessary algorithms and determine the crack width and length on various concrete surfaces. For 
this purpose, a pixel-level identification class was used to quantify the crack size. The length, 
area, maximum width, mean width, and orientation of individual cracks were measured after 
locating the cracks. In separate studies, Aliakbar et al. (2016) detected cracks in real-time images 
from structural sites, and Reagan et al. (2017) detected sub-millimeter cracks in abutment walls 
and other bridge components. Liu and Gao (2022) and Meng et al. (2022) introduced methods 
for crack detection in concrete structures, with the latter utilizing a drone-based system for real-
time detection. The referenced study located the cracks and worked toward the quantification of 
maximum crack width. Xu et al. (2022) proposed a concrete crack segmentation network, while 
Malek et al. (2022) used augmented reality for crack detection.  

ML methods have also been employed for damage assessment in bridge components, as 
indicated in past studies, including Song et al. (2019), Kun et al. (2022), and Mir et al. (2022). 
Specifically, Cha and Choi (2017), Modarres et al. (2018), Yang et al. (2020), Li et al. (2020), 
Guo et al. (2021), Qin et al. (2021), Mirzazade et al. (2022), and Tang et al. (2023) used ML 
techniques for crack detection. Among them, Mir et al. (2022) evaluated the degree of damage 
by focusing on the range of the crack width. Low-brightness regions were extracted using a 
dynamic threshold method and divided into cracked and non-cracked regions. Crack width 
classification was performed, and the datasets were divided into three classes, based on the crack 
widths, spanning from 0 to 9, 9 to 12, and 12 to 16 pixels, as Classes 1, 2, and 3, respectively. 
Kun et al. (2022) located the cracks on bridge decks and quantified the extent of cracks through 
pixel-level segmentation of crack paths. Liu and Gao (2022) detected cracks with the ability to 
determine their associated areas and edges at the pixel level. In Mirzazade et al. (2022), the 
presence of cracks was evaluated by detecting features based on the texture and color of each 
surface. The study included a binary classification (not cracked and cracked) and a multiclass 
classification (intact, simple, and complex). Tang et al. (2023) measured the crack width by 
utilizing a computer vision method. This method involved crack segmentation and backbone 
refinement to capture the crack skeleton.  

Fatigue-induced crack detection has been studied by Wang et al. (2020). The study was 
performed on a steel box girder of a 20-year-old suspension bridge. For similar damage detection 
purposes, Kong et al. (2020) and Zhai et al. (2022) used a combination of real-world and 
synthetic images while utilizing image processing techniques. Wang et al. (2020) proposed a 
computer vision-based methodology for monitoring fatigue cracks in U-rib-to-deck weld seams. 
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Due to the cumulated effects of heavy vehicle loads and initial welding defects, bridge decks 
made with orthotropic steel-box girders (OSGs) often experience fatigue-induced cracks. These 
cracks tend to be predominantly situated in the vicinity of U-ribs. The crack length, width, and 
average width were extracted by Wang et al. (2020) after detecting the cracks. The cracked area 
was determined by counting the pixels within its segmentation mask. Given that the crack’s 
skeleton is a single-pixel width representation of its shape, the crack length was equivalently 
quantified as the count of pixels within the skeleton. Furthermore, the measurement of the crack 
width was performed based on the segmentation mask’s horizontal dimension. 

Corrosion in steel and exposed reinforcing bars in concrete have been the focus of a set of 
AI/ML-related studies. Fan (2021) detected rebar exposure, while Arong et al. (2020) and 
Bianchi et al. (2022) investigated corrosion as well. The proposed methods detected the area of 
corrosion by identifying the key feature points (e.g., location, direction, length, and area) and 
then measuring the pixels associated with each. Corrosion is known to consist of two main visual 
characteristics, i.e., rough texture surface and product color. To identify these two features, 
Munawar et al. (2022) proposed a version-based ML technique for detecting corrosion and water 
staining on various bridge surfaces. The referenced study performed segmentation through 
binary image representation and measured the height and width distributions of the corrosion 
pixels. 

A few AI/ML-related studies have investigated concrete spalling. Among them, Seo et al. (2018) 
used pixel-based methods to determine the spalled area. In a separate effort, Jeong et al. (2022) 
presented a damage identification and classification approach to detect spalling on railing posts, 
decks, pier caps, and other bridge components. Chun et al. (2021) detected multiple forms of 
damage, including spalling. The referenced study used image captioning to describe the damaged 
bridge components. An attention mechanism was employed to focus on input image pixels when 
generating a sentence to describe the damage. Zhu et al. (2020) and Fan (2021) also proposed 
ML-based frameworks to detect spalling. In Fan (2021), the scalar and vector measures of the 
digital image spectra were evaluated for spalling detection with SVM-based clustering. A 
quantification of area ratio and deterioration extent was employed to further evaluate damage 
ranges.  

Some AI/ML-related studies have investigated multiple types of damage. Perry et al. (2020) 
detected the location of defect areas, such as cracks, spalling areas, and delaminated regions on 
bridge decks, girders, and other components. Belcore et al. (2022) presented geomatics and ML 
techniques for the automated detection and classification of images into various classes of 
damage, including drainage issues, uncovered metal bars, and oxidized rebars. A set of features 
was considered for each damaged object, while the classification datasets were enriched with 
derivative features, including spectral, textural, and statistical-based details. Zhu et al. (2020) 
detected the location of various instances of damage through a computer vision-based method. 
For this purpose, the images were labeled with designation such as crack, spalling, exposed 
rebar, pockmark, and intact. In a similar effort, Arong et al. (2020) used an ML technique to 
detect various damage types, including peeling and exposed steel bars, in bridge components. 
Medhi et al. (2019) developed a contactless, noninvasive alternative for assessing the 
displacement and frequency responses of vibrating structures by combining high-resolution 
images with computer vision techniques and real-time image and signal processing methods. 



 12 

Chun et al. (2021) covered a wide spectrum of damage types, including displacement, flaking, 
fissures, slanting, scour, missing material, sinking, exposed rebar, clogging, holes in the 
concrete, concrete spalling, fractures, cracks, corrosion, deformation, discoloration, degradation 
of anti-corrosive layers, damaged reinforcement, abnormal expansion, degradation, leaking, and 
potholes.  

Overall, different damage types and characteristics have been used to evaluate the condition state 
of bridge components. Some of the common measurements have been crack width, spalled area, 
scratch size, and corrosion region. On the other hand, some studies, such as Aliakbar et al. 
(2016), Modarres et al. (2018), Khaloo et al. (2018), and Kong et al. (2020), did not quantify the 
damage but primarily aimed to locate it. The following section provides the necessary details on 
how the damage types and characteristics of interest can be captured through various technology-
enabled data collection techniques. Table 2.2 presents the damage types that are determined by 
using the AI/ML techniques. 

Table 2.2. Quantification of the extent of damage detected in bridge components 
Damage Quantification Reference 

Cracks 
Crack location Malek et al. 2022 
Crack width  Mir et al. 2022 
Crack area  Liu and Gao 2022 
Maximum crack width Meng et al. 2022 
Crack width Xu et al. 2022 
Maximum crack width/angle measurement Zheng et al. 2022 
Crack location  Kun et al. 2022 
Crack location, crack length, kink length/angle Perry et al. 2022 
Length and width of cracks Jeong et al. 2022 
Crack size Quqa et al. 2022 
Continuous boundary of cracks, crack length and width  Li et al. 2020 
Crack location, length, width, and average width Wang et al. 2020 
Crack geometry, length, width, area, and orientation Bhowmick et al. 2020 
Crack location, width Morgenthal et al. 2019 
Corrosion  
Located corrosion, measured corrosion area  Bianchi et al. 2022 
Corrosion location, height, width distributions Munawar et al. 2022 
Spalling  
Spalling numbers, area ratios, and deterioration levels Fan 2021 
Spalled area  Seo et al. 2018 
Expansion Joint Gap 
Size of the gap in the bridge deck Jeong et al. 2022 
Gap width Kim et al. 2021 
Other Damage Types 
Detection of defects, such as holes, bumps, and color variation Galdelli et al. 2022 
Quantification of defects, in terms of width and area  Perry et al. 2020 
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2.3 Image and Data Collection for Bridge Damage Detection 

Data collection is a critical step for the detection and quantification of damage in bridges. Data 
obtained from NDE methods and health monitoring systems often provide valuable information 
about the condition state of bridge structures. Those methods and systems, however, require 
specialized skills and equipment, limiting their practical application. As an alternative source of 
data, direct visual observations (during conventional inspections) and camera-recorded images 
are frequently used to determine the types and extents of damage. With a transition to automated 
processes for damage detection, it is vital to know the main characteristics of the images required 
to provide reliable inputs. In particular, image datasets can be produced by various equipment, 
including that used by human inspectors, UAVs, and UUVs. The images can be captured by 
digital cameras of various resolutions or generated through image synthesis approaches. The 
image quality can also significantly differ depending on, for example, distance, angle, and 
lighting conditions. Given possible variations, in terms of both quality and quantity, it is critical 
to have a proper understanding of the capabilities required to obtain images useful for 
postprocessing through AI/ML techniques. 

Several studies have used high-resolution cameras to capture images of bridge decks, walls, 
piers, and other structural components. In Jeong et al. (2022), two UAVs, i.e., DJI Phantom 4 
and DJI Matrice 210 equipped with 12.4-megapixel and 20.8-megapixel cameras, respectively, 
were used. The images captured were used to identify the instances of damage in concrete 
columns and cross-laminated timber beams. In Perry et al. (2020), the images were taken using 
four UAVs: DJI Matrice 600 Pro with a Zenmuse X3 camera (12.4-megapixel resolution), DJI 
Phantom 4 Pro V2.0 (20-megapixel resolution), DJI Mavic 2 Zoom (12-megapixel resolution), 
and DJI Mavic 2 Pro (20-megapixel resolution). The high-resolution images obtained from piers, 
pier caps, decks, and beams were used to generate a 3D point cloud and photorealistic model. 
Bhowmick et al. (2020) used a video recorded by a UAV with a resolution of 2,160×4,096 pixels 
at 24 frames per second (fps). The video was translated and rotated during parts of the test to 
simulate real-world inspections. In addition, an iPhone video with a resolution of 720×1,280 
pixels was recorded at 30 fps. A comparison of the captured videos showed that the higher 
resolution and mobility of the UAV enabled more complete footage of cracks on the target 
concrete beam to be captured from different angles. In Kun et al. (2022), 385 images were 
collected from bridge cracks using an I-800 Airborne Plane Array Camera and a UAV platform. 
The images had a 2,560 × 2,560 pixel resolution and were captured using a dual camera with 
optical zoom and 360-degree non-dead angle detection. The real-time kinematic positioning 
information was transmitted back to the ground station for data analysis. Overall, the dataset was 
found to be sufficient for training a deep learning model to achieve the expected crack 
segmentation accuracy. Munawar et al. (2022) used a UAV to capture 1,300 images of various 
bridge surfaces with a 4,864×3,648 pixel resolution. After collecting the dataset, preprocessing 
was performed on the captured images for the removal of unwanted objects and noise by 
rotating, cropping, and flipping the images. Belcore et al. (2022) used a Raspberry Pi RGB 
camera module installed on a UAV to capture 495 images of bridge intrados with a 45-degree 
orientation and a resolution of 1,024×720 pixels.  

Seo et al. (2018) used a DJI Phantom 4 UAV to capture high-resolution images of a bridge with 
low illumination. The bridge had glued-laminated girders with a composite concrete deck. The 
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high-quality imagery was noted to improve the damage identification and facilitate the inspection 
process. In a separate study, Morgenthal et al. (2019) proposed a framework for automated 
UAVs to help with the inspection of large bridges. The referenced study obtained 1,250 high-
resolution images of bridge piers using a UAV. The images had a resolution of 0.6 mm/pixel. In 
Aliakbar et al. (2016), a set of 10 images was obtained from a UAV positioned at two different 
distances from a simulated structure. The target structure consisted of four homogenous metallic 
cubes placed on each other. Each set included three images taken from the center, left, and right 
directions. To mitigate the angular displacement caused by the UAV’s drift during flight, the left 
and right views of the structure were included with an angular displacement of approximately 20 
degrees. The central image was taken as a reference image, while the other two images were 
transformed with respect to the reference image. For each set, the three images were then 
stitched together to form the final image. In Li et al. (2020), the Bridge Substructure Detection 
10 (BSD-10) device was used to collect 7,200 images with a resolution of 224×224 pixels from 
10 existing bridges (most of which had service ages of less than 20 years). The images were 
captured under different lighting conditions and distances. Khaloo et al. (2018) used two 
cameras, i.e., a Sony NEX-7 and a GoPro Hero 3, mounted on a UAV to capture images of a 
bridge at various pixel sizes. Structural defects, such as cracks and spalling, were then identified. 
Compared to a regular inspection, the UAV-based inspection was able to detect more defects. 
Limitations were, however, reported for the UAV-based inspection, including flight time, range 
of the UAV platform, and processing time for damage detection. In Mirzazade et al. (2022) and 
Kim et al. (2021), a Sony R10C camera with a 20.1-megapixel resolution and NEXUS 
equipment with a resolution of 10,000×1,024 pixels were used, respectively, to obtain a set of 
images from bridge abutments. During the first scanning reported in Mirzazade et al. (2022), 140 
images with a resolution of 5,634×3,753 pixels were captured under different perspectives and 
light conditions. To augment the number of images available for training the damage detection 
algorithms, the images were sliced into 227×227 pixels. A total of 8,344 cropped images were 
selected from them to generate the dataset.  

Image capturing parameters, such as resolution, distance, angle, and coverage area, are expected 
to allow for the identification of defects in target structural components. Lighting conditions 
strongly influence image quality. Therefore, controlled illumination or normalization in 
postprocessing can become necessary. To improve the efficiency of image processing, captured 
images are often cropped to smaller sizes and gray-scaled. In the relevant AI/ML studies, 64×64 
pixel images were used by Guo et al. (2021) and 224×224 pixel resized images with RGB color 
channels were employed by Savino and Tondolo (2021). The methods used in these studies were 
similar to those used in Kim et al. (2021) and Mirzazade et al. (2022), in which the row images 
were cropped.  

Data augmentation through rotation, blurring, and noise injection can synthetically expand 
datasets. The key is to retain meaningful damage signatures and structural contexts while 
preparing the images for algorithm objectives like training and run-time performance. Galdelli et 
al. (2022) used three different multicamera systems to capture different types of images for 
bridge damage detection. The RGB camera captured color images with a resolution of 
4,096×3,000 pixels, the depth camera captured color images with a resolution of 1,280×720 
pixels, and the multispectral camera captured images with a resolution of 2,048×1,088 pixels. 
The third camera was able to capture multispectral images with frequencies across the short-



 15 

wave infrared, visible, ultraviolet, and electromagnetic spectra, covering the 175 nm to 2500 nm 
wavelength range. Perry et al. (2022) used three datasets to detect cracks in steel girders, 
utilizing a total of 250 images with a resolution of 4,928×3,264 pixels. Bianchi et al. (2022) used 
288 images with a resolution of 1,920×1,060 pixels and found that images taken from 1.5 to 2.4 
m (5 to 8 ft) offsets produce the lowest amount of errors. Reagan et al. (2017) used a set of 2-
megapixel acA1600-20um digital cameras. A resolution of 1,626×1,236 pixels was used to 
inspect the wall and abutment of a 56-year old bridge. In Zheng et al. (2022), the girders and 
abutments of two bridges that contained cracks were photographed with a high-resolution 24-
megapixel camera. The images were 2,560×2,560 pixels and processed by a quadrilateral 
transformation to convert them to square subblocks. The subblocks were spliced together to 
restore the investigated surface area. After compiling all subblocks, the model was able to detect 
the cracks. 

Liu and Gao (2022) proposed an image acquisition module composed of area-scan cameras, 
optical lenses, and infrared light sources. The image resolutions were 5,472×3,648 pixels, while 
the optical lens offered a focal length of 16 mm and a minimum operating distance of 0.10 m. 
The study utilized 150 images cropped to different sizes and reported a high crack detection 
accuracy. Lattanzi et al. (2016) captured a total of 390 images from reinforced concrete bridge 
columns. All images were analyzed with a resolution of 50 pixels/inch. The developed regression 
models were found to be capable of predicting the maximum lateral displacement experienced by 
a damaged reinforced concrete column. In a separate study, Malek et al. (2022) employed a 
Microsoft HoloLens headset to capture images for crack damage detection. The study utilized 
two different generations of this headset, with the first generation having a photo resolution of 
2,048×1,152 pixels and a video resolution of 1,280×720 pixels, while the second generation had 
a photo resolution of 3,904×2,196 pixels and a video resolution of 2,272×1,278 pixels. Both 
headsets were able to detect cracks with a width of 0.7 mm after implementing the Canny 
algorithm into the headsets, but the second-generation headset was noted to provide a higher 
level of crack detection accuracy. In Mir et al. (2022), six training images with a resolution of 
1,100×500 pixels were extracted from a 2,592×1,944 pixel original image captured for crack 
detection. Crack classification based on width was found to be valuable in scenarios where 
adequate image resolution is lacking. Zhai et al. (2022) used 120 real-world images of fatigue-
induced cracks from steel box girders with resolutions of 4,928×3,264 and 5,152×3,864 pixels. 
The images were then augmented by cropping and flipping.  

For damage detection purposes, Modarres et al. (2018) utilized 2,400 images of the concrete 
surfaces of existing bridge structures with a resolution of 96×96 pixels. In a separate effort, Zhu 
et al. (2020) used 1,180 images with arbitrary sizes and pixel resolutions. The prediction models 
were then tested on 134 images taken from different bridges that were not part of the training and 
validation sets. Similarly, Zhou et al. (2019) employed a training dataset of 500 images labeled 
for damage. Song et al. (2019) used a dataset of 2,068 bridge crack images. The large images 
were cut into 256×256 pixel images. A total of 5,180 small images were eventually used after 
blurred images were removed. The dataset was divided into training, validation, and test sets in a 
ratio of 8:1:1. Cha and Choi (2017) used a database of 20,000 images of cracked concrete and 
20,000 images of uncracked concrete. After the original high-resolution images were cropped, 
80% of the images were used for training and the remaining 20% for validation. 
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Xu et al. (2022) used the Bridge Crack Image Data and Crack Forest Dataset for a crack 
detection model. The Bridge Crack Image Data contained 2,000 bridge crack images with a 
resolution of 1,024×1,024 pixels, while the Crack Forest Dataset included 118 crack images 
sized to 480×360 pixels. The main characteristic of the referenced images, which were taken 
using an iPhone 5, is that they contain noise such as shadows, oil spots, and water stains. To 
enhance the ability of the models to learn crack features, the training set images were enhanced 
by cropping, rotating, and flipping. In Meng et al. (2022), two datasets, METUCrack (i.e., 
images captured from buildings) (Özgenel 2019) and SBGCrack (i.e., images from the First 
International Project Competition for Structural Health Monitoring) (Bao et al. 2021), were used 
to train and test the AI/ML algorithms. The METUCrack dataset contained 458 images of 
concrete surface cracks with a resolution of 3,024×4,032 pixels, while the SBGCrack dataset 
contained 200 images of fatigue-induced cracks with a resolution of 4,928×3,264 pixels. Both 
datasets were scaled to 1,024×1,024 pixels and split into training, validation, and test sets in a 
7:2:1 ratio. 

Focusing on gusset plates, Gulgec et al. (2019) generated a total of 30,000 damaged samples (by 
simulating different noise levels) and 30,000 intact samples. To generate the sample images, 
various loading cases, damage scenarios, and noise levels were considered. Four different noise 
levels were added to the noise-free samples, and a convolution operation with a kernel size of 
2×2×2 and a stride of 3 was performed. The outcome of the referenced study was high accuracy 
in detecting damage in gusset plates. This accuracy was maintained even after introducing up to 
16% noise. Abdelkader et al. (2020) worked to filter different types of noise. Among them were 
Gaussian noise, which mainly affects all of the pixel values; salt and pepper noise, which usually 
occurs due to errors during the image transmission phase; and speckle noise, which is a granular 
disturbance that impacts all of the intrinsic attributes of an image. The process began with the 
conversion of RGB images into grayscale images, with intensity values ranging from 0 to 255. 
This conversion was to improve image processing while preserving essential distress features. 
The grayscale images were then standardized to 200×200 pixels to ensure consistency in the 
training and testing process. The next step was to convert the noise-free images into noisy ones. 
This was to evaluate how well the noise detection model could identify different types of noise in 
an image.  

A study by Zhu et al. (2020) classified partial defects (e.g., spalling, exposed rebar, cracks, and 
pockmarks) on bridge surfaces. For this purpose, a transfer learning model was trained on 1,180 
images and then tested on 134 images from various bridge components, including decks and 
walls. The model achieved 97.8% accuracy on the testing set. Savino and Tondolo (2021) 
applied an automated concrete damage classification scheme to different concrete surfaces, 
including piers and decks. The referenced study utilized eight pretrained networks and selected 
GoogLeNet as the best network (with 94% accuracy). Liu and El-Gohary (2020) proposed a 
semantic image retrieval and clustering method to collect relevant images from the web and 
cluster them for bridge component and defect detection. The method was evaluated for its ability 
to predict the condition rating of the decks, superstructures, and substructures of 2,646 bridges in 
the state of Washington. The performance was evaluated using the silhouette coefficient and 
showed promising results. In Fan (2021), a dataset of 1,000 damage samples (including rebar 
exposure, spalling, efflorescence, and cracking) was randomly selected for training and testing 
purposes. A hybrid model (i.e., cluster analysis followed by SVM classification) performed 
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better than a standalone SVM for detecting all four damage types. Deng et al. (2021) generated a 
dataset using real-world images of cracks on concrete surfaces that were taken at different angles 
and distances with a range of background information. Various cameras were used, including 
RGB, depth, multispectral, and high-resolution cameras, with resolutions ranging from 
1,280×720 to 5,152×3,864 pixels. The cracks were successfully detected by the model, but the 
detection accuracy was noted to be significantly affected by the lighting condition and 
complexity of the background.  

UAVs are commonly used to capture images, while real-time kinematic positioning information 
is transmitted back to the ground station for data analysis. The images have different sizes and 
resolutions. They are often cropped, resized, or gray-scaled to improve the efficiency of image 
processing algorithms. Some studies have used multiple cameras to capture images from 
different angles, and others have used devices to collect images under different lighting 
conditions and distances. Among the examples, Cha et al. (2017), Li and Zhao (2019), Feng et al. 
(2019), and Aliyari et al. (2021) collected high-resolution images suitable for damage detection. 
Using UAVs and high-resolution cameras has improved the efficiency of image processing, 
while the standardization of image size/quality and the extraction of important features of 
distress have helped with noise reduction.  

There are, however, some limitations and challenges when using digital cameras or UAVs for 
collecting images from bridge structures. One is the limited field of view, as cameras and UAVs 
offer a specific field of view, which means that they may not be able to capture the entire bridge 
component in a single image. This can result in incomplete datasets, making it challenging to 
detect damage accurately. A second limitation is that the quality of images captured by cameras 
and UAVs can be affected by various factors, including lighting conditions, weather, and camera 
settings. Poor image quality can make it challenging to detect damage accurately. A third 
limitation is that collecting and storing large numbers of images can be challenging and 
expensive, particularly if high-resolution images are used. To address the outlined limitations, 
several strategies can be employed. Using multiple cameras or UAVs can help capture a wide 
field of view and reduce the risk of missing important data. Furthermore, choosing cameras and 
sensors specifically designed for aerial photography and bridge inspection can deliver high-
resolution images even in constrained environments or under low-light conditions. Image 
processing techniques, such as image enhancement and noise reduction, can help improve the 
quality of images, while the use of cloud storage and computing makes it possible to collect and 
analyze a large inventory of images. 

2.4 Automated Damage Detection in Bridge Components 

2.4.1 Convolutional Neural Networks 

Several AI/ML algorithms have been used for detecting damage in bridge components. Among 
them, CNNs have been widely considered in the available literature. For example, Xu et al. 
(2022) proposed a convolution-deconvolution feature fusion holistically nested network 
(CDFFHNet) for concrete surface crack detection. The architecture of the network was 
composed of three components: (1) VGG-16 feature extraction with a channel attention 
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mechanism, (2) a convolution-deconvolution feature fusion module, and (3) a multiscale feature 
fusion holistically nested network. The network improved the accuracy of crack segmentation 
compared to benchmark networks, such as holistically nested edge detection (HED), fully 
convolutional network (FCN), segmentation network (SegNet), U-Net convolutional network 
(U-Net), and richer convolutional features (RCF). The CDFFHNet was found to outperform the 
other networks in all three metrics of accuracy, recall, and F1 score. This superiority was 
attributed to the CNN employed to identify surface cracks in bridge components (Qin et al. 
2021). The referenced CNN was constructed with four convolutional layers, four pooling layers, 
and three fully connected layers. It was then trained with the backpropagation stochastic gradient 
descent method. The results showed that the accuracy of crack identification using the CNN 
algorithm can be significantly higher than that obtained from traditional image processing 
methods. A cascade broad neural network (CBNN) was proposed by Guo et al. (2021) for 
concrete surface crack classification. The classes included not cracked and cracked, as well as 
intact, simple crack, and complex crack. The cascade structure in each level was an ensemble of 
different broad learning classifiers to encourage diversity. The CBNN achieved higher accuracy 
than other methods like ResNet-50 and offered a more straightforward structure and faster 
training time.  

Bhowmick et al. (2020) proposed a method for processing video measurements using a deep 
neural network image segmentation architecture called U-Net. U-Net segmented the pixels in the 
crack images and converted the original RGB images of the concrete surface to binary images of 
cracks. Morphological operations were then performed to compute the geometric properties of 
the cracks, such as length, width, area, and orientation. The method was validated by carrying 
out a laboratory experiment on a concrete beam. Bhowmick et al. (2020) found that U-Net 
successfully detects and segments multiple propagating cracks on the beam surfaces not used for 
training. Similarly, Guo et al. (2021) showed that the cascade structure and ensemble 
classification can enable high accuracy after efficient training. Munawar et al. (2022) proposed a 
modified deep hierarchical CNN (16 convolution layers plus a cycle generative adversarial 
network [CycleGAN]) for pixel-wise damage segmentation on various steel surfaces. The 
architecture was optimized for damage specific to critical sections of bridge piers through fine-
tuning the main image properties, such as brightness, contrast, and sharpness. The effectiveness 
model was assessed using 1,300 civil infrastructure images. The results showed that the proposed 
model outperformed other models, including pyramid scene parsing network (PSPNet), 
DeepLab, baseline, and SegNet. The referenced method produced a global accuracy of 0.989, 
class average accuracy of 0.931, mean intersection of union (IoU) of 0.878, precision of 0.849, 
recall of 0.818, and F-score of 0.833. Guided filtering and conditional random fields methods 
were used to further refine the prediction results.  

CNN algorithms can also identify and detect instances of damage in steel components commonly 
found in bridge structures. Through synthetic data augmentation, Zhai et al. (2022) used an FCN 
to detect fatigue-induced cracks in steel box girders. This method involved mapping synthetic 
textures onto a 3D graphics model to generate synthetic images, which were then used to train 
the FCN with real data. The outlined method improved crack identification performance from 
35% to 40% for IoU and from 49% to 62% for precision. Wang et al. (2020) proposed a machine 
vision-based methodology for monitoring fatigue-induced cracks in U-rib-to-deck weld seams in 
OSG bridges. An internet of things (IoT)-based image acquisition device was designed, along 
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with a framework for image rectification and stitching. A cascade crack recognition method was 
developed, including a crack region detection, crack semantic segmentation, close morphological 
operation, and skeleton extraction algorithm. A deep convolutional neural network (DCNN)-
based crack classifier was employed to distinguish whether the sub-images include cracks. The 
proposed methodology was applied to 14 fatigue-induced cracks in orthotropic steel box girder 
bridges and showed promising results, with a root mean square error of 3.0195 mm and 0.003 
mm in length and width measurements, respectively.  

Perry et al. (2022) developed a U-Net network to determine the pixel-level location of cracks in 
webs of steel girders (where the crack is far from the flange-to-web interface). This was followed 
by a surrogate model based on a Gaussian process to estimate stress intensity factors, which 
served as indicators of fracture for cracks of different sizes. The U-Net architecture is a powerful 
tool for image segmentation with an encoder-decoder structure. The encoder reduces the size and 
increases the depth of the input, while the decoder layers are added from the encoder layers to 
produce the final output. The 10 tested U-Net architectures, 5 with colored inputs and 5 with 
grayscale inputs, were trained and demonstrated high accuracy when examining the validation 
dataset. However, a tradeoff was noted between the processing time and accuracy, where smaller 
U-Nets had a faster processing time but a lower accuracy. Kim et al. (2018) proposed a DCNN-
based damage locating method for detecting damage in steel frames. The method achieved 
99.3% accuracy, outperforming MobileNet and ResNet, which provided 96.2% and 95.4% 
accuracy, respectively.  

Bianchi et al. (2022) evaluated a combination of images and AI/ML techniques to detect 
corrosion in steel bridge girders. Specifically, experimental assessments were conducted on three 
image registration methods, i.e., rigid, deformable, and hybrid. The assessments primarily aimed 
to evaluate the model’s effectiveness in preserving the geometric properties of the source images. 
The best results were achieved with homography-based transformations. In addition, a semantic 
damage detection model was trained on 440 annotated bridge inspection images using the 
DeeplabV3+ architecture. SuperGlue, which is a graph neural network (GNN), matched the 
feature points. A dense image alignment method, known as image registration or random sample 
consensus (RANSAC)-flow, was used to geometrically align the newly obtained images with the 
original inspection images. The aligned images were then examined to detect time-dependent 
changes in damage as a measure to determine the progression of deterioration. This pretrained 
deep neural network damage detection model achieved an F1 score of 86.67% on the test dataset. 
The feature-matching process involved obtaining interest points, computing descriptors, 
conducting nearest neighbor searches, filtering out incompatible searches, and estimating valid 
transformations.  

To detect, match, and analyze the features that are present in images taken from a bridge 
component, classical feature-matching techniques often use (1) scale-invariant feature transform 
(SIFT) for finding feature points, (2) Lowe’s ratio test for filtering points, and (3) RANSAC for 
finding transformations. Kim et al. (2021) detected the instances of damage in bridge expansion 
joints using a CNN as a feature extractor. Nineteen image patches were created and classified to 
identify the presence of damage. A U-Net architecture was used as a segmentation model to 
extract the gap region from the cropped images. The first model was trained to extract metal 
parts from the line-scan images, and the second model was trained to find the gap region. The 
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gap length was then calculated by converting the minimum gap distance in pixels to millimeters. 
The developed algorithm had an identification accuracy of more than 95% and reduced the 
investigation time by more than 95%, i.e., from 1 hour/bridge to 3 minutes/bridge. The accuracy 
of the gap measurements was also improved from 67.5% to 95.0%. Zhou et al. (2019) used You 
Only Look Once (YOLO) Version 3 (v3), a CNN-based object detection algorithm, to detect 
damage in high-strength bolts in long-span steel bridges. The referenced study developed a 
dataset of 500 labeled images and trained the YOLOv3 model on the dataset. The feasibility of 
the proposed method was verified by testing the model on two new damage images. 

In addition to detecting damage in steel components, CNN algorithms have been used to detect 
damage in concrete components. Zheng et al. (2022) proposed a convolutional active learning 
identification-segmentation-measurement (CAL-ISM) framework for crack detection in 
reinforced concrete bridge piers. The framework included four steps: (1) pretraining of a 
benchmark classification model, (2) retraining with a semi-supervised active learning model, (3) 
pixel-level crack segmentation, and (4) crack width measurement. The CAL-ISM framework 
was applied to two bridges and showed promising results, where the maximum recognition error 
was limited to less than 10% for narrow cracks and an error range of 0% to 12% for actual 
bridges. Deng et al. (2021) developed a modified YOLOv2 network for crack identification in 
reinforced concrete structures. Using real-world images with handwritten text, YOLOv2 served 
as a single-stage object detection network, predicting the location of objects through bounding 
boxes. It was then fine-tuned to differentiate concrete cracks from crack-like features. The 
outcome was found to offer an accuracy level similar to that provided by a region-based CNN 
(R-CNN). The process, however, was faster, indicating the potential for use in real-time crack 
detection applications. Modarres et al. (2018) proposed a CNN architecture for damage detection 
and classification in honeycomb panels. The algorithm’s architecture included three stacks of 
convolutional pooling layers and three fully connected hidden layers. The algorithm used a 
rectified linear unit (ReLU) activation, a 0.75 dropout rate, adaptive moment estimation 
optimization, and a softmax cost function. The proposed architecture achieved a predictive 
accuracy of 99.6% in classifying different types of damage in synthetic honeycomb structures 
and outperformed other AI/ML algorithms in real-world concrete bridge crack scenarios (with a 
predictive accuracy of 98.8%). 

Kun et al. (2022) captured images of abutments, piers, and box girders from a concrete bridge 
structure and used the deep bridge crack classification (DBCC)-Net method, a CNN-based neural 
network, for crack patch classification. This method used a two-stage crack detection strategy for 
finding cracks and extracting crack morphology from high-resolution images. The first stage 
realized the coarse extraction of crack position, and the second stage extracted the complete 
crack morphology from the location suggested by the semantic segmentation network. The 
postprocessing capability and a two-stage crack detection strategy enabled the network to detect 
cracks quickly. This method addressed the issue that the target detection network could only 
detect crack locations and not crack shape features.  

Jeong et al. (2022) proposed a CNN algorithm for damage identification and classification in 
several bridge components, including railing posts, decks, pier caps, columns/piers/piles, and 
floor beams. A pixel-based algorithm was employed to measure the extent of damage (e.g., 
cracking, spalling, discoloration, efflorescence, and rust) by counting pixels in an image. The 
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predictive accuracy was validated by comparing the damage measure provided by the image 
analysis with that from direct measurement. In a separate effort, Chun et al. (2021) combined 
CNN Inception v3, gated recurrent unit (GRU), and an attention mechanism for explanatory text 
generation to describe image contexts. It was found that 68.8% of the generated texts were 
correct and 92.9% were either correct or partially correct. A vision-based method for detecting 
concrete cracks using a deep CNN was proposed by Cha and Choi (2017). The dataset was 
generated from images taken under uncontrolled circumstances and fed into the designed CNN, 
resulting in 98% accuracy in training and validation. Input images were generalized to a vector 
format with 96 elements in training. The vector was then classified as crack or intact after it was 
processed through the ReLU, last convolution, and softmax layers. The trained CNN classifier 
was found to perform well in testing with images taken under uncontrolled situations.  

In Mirzazade et al. (2022), a trained CNN algorithm was combined with a sliding window 
technique and autonomously flying drones. A real-world case study on a simply supported 
concrete bridge was performed to compare the performance of four different CNNs (i.e., VGG-
19, Inception v3, GoogLeNet, and ResNet) for autonomous crack detection in bridges. The 
models were evaluated based on accuracy, loss (the difference between the predicted values 
[output] and the actual or target values in the model), computational time, model size, and 
architectural depth. Inception v3 achieved the highest accuracy (96.2%) but with the longest 
training time (12 hours). GoogleNet offered a good balance between accuracy (around 90%) and 
computation time (4 hours). GoogLeNet had the best performance in terms of accuracy and 
precision, but it only drew a boundary box around the likely damaged regions, not a pixel-level 
region specifying the crack. The application of pretrained CNN models demonstrated the 
feasibility of transfer learning in overcoming data scarcity issues common in this domain. 
Moreover, the comparison of different CNN architectures provided valuable insights into the 
tradeoffs between accuracy, computational efficiency, and model complexity. Seo et al. (2022) 
used an ML-based approach coupled with image visibility optimization techniques to improve 
visual bridge inspection using remote-controlled drones. The approach involved using CNNs as a 
representative AI/ML algorithm for the analysis of high-resolution images of the deck, 
superstructure, and substructure. The efficiency was evaluated using remote-controlled drones to 
detect and measure the damage (in terms of cracking, weathering, and spalling) observed on two 
bridges in Minnesota. The CNN algorithm was trained with images that contained various 
damage types but fine-tuned for optimized visibility.  

Abdelkader et al. (2020) proposed a two-tier method for automatically detecting noise and 
restoring bridge defect images. In the first tier, the hybrid Elman neural network-invasive weed 
optimization (ENN-IWO) model was employed for identifying the type of noise in the image. 
The model outperformed other classifiers by achieving a 95.28% accuracy, 95.24% sensitivity, 
98.07% specificity, 95.25% precision, 95.34% F-measure, and 0.935 Kappa coefficient. In the 
second tier, the moth-flame optimization-based restoration model was used to improve the 
degraded image quality of bridge defects. The model outperformed other conventional and 
optimization-based restoration models. The outcome of the proposed method was a hybrid image 
filtering protocol that integrated spatial and frequency domain filters. Li et al. (2020) proposed a 
crack extraction algorithm that used multilayer features extracted from an FCN and a naive 
Bayes data fusion model. The method showed notable recognition accuracy, computational time, 
and accuracy rates compared to other CNN algorithms. Gulgec et al. (2019) introduced a deep 
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architecture and training process for CNNs to detect and localize damage. The training phase 
consisted of two tasks, i.e., detection and localization. Detection was treated as a classification 
problem (0 for undamaged and 1 for damaged), while localization was treated as a regression 
problem. Shared front-end layers were used for more efficient learning, shorter training time, and 
lower computational cost. Song et al. (2019) utilized SegNet, a lightweight end-to-end pixel-wise 
classification model, to detect and localize cracks in images. The referenced study used data 
augmentation to improve the generalization ability and performed nonlinear upsampling using 
pooling indices. The IoU on the bridge crack image dataset reached more than 0.70. The SegNet 
method outperformed traditional edge detection methods, such as Canny and Sobel, to a margin 
that it could detect cracks in images with large amounts of noise interference and complex 
background textures. The trained SegNet model was able to segment the cracks in images at any 
size with the sliding window scanning feature. Figure 2.4 compiles the CNN algorithms that are 
discussed in this section.  

 
Figure 2.4. Overview of CNN-based algorithms used to detect bridge damage 

2.4.2 Support Vector Machines 
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decks. Mir et al. (2022) proposed an SVM-based discriminant generation method for crack 
detection on concrete surfaces. Semantic segmentation with ResNet-18 (a CNN with 18 layers) 
was used to detect the crack rate in the images. Three classes were created for crack widths 
ranging from 0 to 8 pixels, 8 to 12 pixels, and 12 to 16 pixels. Low-brightness regions were 
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improved the detection rate by 11.7% compared to the arbitrary features method. Fan (2021) 
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(included rebar exposure, spalling, efflorescence, and cracking) using a hybrid machine learning 
(HML) approach. The HML combined cluster analyses with an SVM to create SVM-based 
clustering. Six evaluation indicators were used to compare the classification of SVM and SVM-
based clustering. The results indicated that the SVM-based clustering approach had superior 
detection capability compared to the SVM for multiple types of damage. The highest detection 
accuracy was for cracks (with an accuracy of 99.3%), followed by rebar exposure, concrete 
spalling, and efflorescence (with an accuracy of 94.9%). It should be noted that the effectiveness 
of HML was found to be reliant on image quality. Hence, color changes and environmental noise 
can limit HML’s image recognition effectiveness. Arong et al. (2020) proposed an SVM-based 
bridge soundness evaluation method using 971 bridge inspection data points. The SVM was used 
to classify the health of bridge components, where the health rating was classified into the four 
categories of I (or Good), II, III, and IV (or poor), as one of the outcomes.  

2.4.3 Classification Algorithms 

Different classification algorithms have been used to identify instances of damage in bridge 
components. Belcore et al. (2022) proposed a semiautomatic, object-oriented, supervised 
classification. This classification used a random forest model for damage detection using images 
captured by a modified UAV equipped with a low-cost camera. The input included an 
orthoimage and a digital surface model from photogrammetric processing. The algorithm was 
tested on a bridge made of two separate prestressed concrete structures in Turin, Italy. The 
outcome showed effectiveness in almost all classes, with an F1 score never below 0.75. The 
accuracy could be further improved by using infrared-sensitive sensors and correcting for 
environmental lighting conditions. Meng et al. (2022) proposed an automatic crack detection 
method using a drone, including lightweight classification and crack segmentation algorithms 
(LSegModel and CLsModel) and a high-precision crack segmentation algorithm (HSegModel). 
The method involved obtaining an orthogonal projection of the target image and classifying the 
crack regions using CLsModel. This was followed by segmentation using LSegModel and 
HSegModel. The results indicated that the proposed method had high accuracy in detecting 
cracks, outperforming traditional edge detection and deep learning-based methods. Yang and 
Cervone (2019) developed a system that used deep learning and multiple classifiers for damage 
assessment using aerial images. The referenced study manually labeled a small set of images that 
showed flooded or non-flooded areas and then identified the most characteristic features using 
several ML classifiers. An ensemble max-voting classifier was also used to classify the unlabeled 
images. The evaluation results showed an accuracy of 85.6% and an F1 score of 89.1%, 
demonstrating the effectiveness of combining deep learning and an ensemble max-voting 
classifier.  

Lattanzi et al. (2016) investigated the viability of applying computer vision techniques for 
estimating the peak displacement of bridge columns subjected to seismic excitations. 
Correlations were established by using images (of damaged columns) and experimental data 
from lateral load tests performed on reinforced concrete bridge columns. The proposed computer 
vision algorithms were based on image segmentation, feature extraction, and nonlinear 
regression analysis. With the objective of estimating the peak drift, the referenced study reported 
strong correlations between parameterized crack patterns and structural displacements. Liu and 
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Gao (2022) proposed a method for crack detection in concrete structures using the baseline 
model of visual characteristics of images (BMVCI) method. The method involved cropping 
images into sub-images, denoising, generating visual characteristics, and implementing a kernel 
principal component analysis (KPCA). A crack detection index and a novel detection method 
(through an acquisition module composed of area-scan cameras, optical lenses, and infrared light 
sources) were then used to detect cracks. The results showed excellent performance in detecting 
cracks in concrete structural components. Compared to CNN-based methods, the proposed 
method exhibited improved computational efficiency, as it does not require a large training 
dataset. 

As an alternative algorithm, the speeded up robust features (SURF)-based algorithm detects 
points of interest and extracts features for image stitching and crack identification, helping 
identify changes in bridge structures. Aliakbar et al. (2016) used a SURF-based algorithm for 
bridge crack detection. The algorithm was tested on images taken by a stationary UAV and 
showed successful results in detecting physical changes. Kong et al. (2020) compared the 
detection and performance of four feature point extraction methods (i.e., FAST, ORB, SIFT, and 
SURF) for fatigue-induced crack detection. The ORB and SIFT methods performed well in 
feature point extraction, while the FAST method had a higher matching rate in low-light 
conditions. The ORB method was reported to be the fastest method among those investigated in 
the referenced study. 

Another approach for damage assessment is using edge detection methods. Among them, the 
Canny edge detection algorithm offers a pattern recognition technique to recognize the edge 
pixels in an image. Malek et al. (2022) used the Canny algorithm for bridge damage detection, as 
it offers low computational demand and fast processing in addition to its ability to detect low-
contrast edges. The referenced study processed RGB crack images through a series of steps, 
including image acquisition, grayscale conversion, noise reduction, gradient evaluation with the 
Sobel operator, and edge evaluation using hysteresis thresholding for binary image segmentation. 
The recall-precision analysis showed that the maximum accuracy can range from 7.5% to 9.5% 
after simplifications. Perry et al. (2020) proposed a defect detection algorithm that relied on 
computer vision and was optimized for concrete bridge defects. The algorithm used black hat 
transform, Canny edge detector, Gaussian blur, and OpenCV functions for preprocessing and 
identifying defects. The system was compared to human-based and UAV-assisted inspections 
and showed advantages in terms of in-depth data analytics and automated damage quantification 
and visualization. The algorithms proposed for identifying and tracking defects, along with the 
element identification algorithm, successfully detected, located, and measured the size of flaws 
(cracking, spalling, and delamination) in the target structural components. Galdelli et al. (2022) 
used a flaw detection system for damage detection in the bridge’s sub-areas and the deck’s lower 
surface. The system converted RGB and 3D images to grayscale, passed them through a blurring 
filter (Gaussian or bilateral), performed adaptive thresholding and nonlinear morphological 
operations, and completed contour searches. Upon removing the outliers, the flaw detection 
system produced high-quality and robust results, but the identification task remained a challenge 
in computer vision, requiring large amounts of data. 

Lastly, some studies explored photogrammetric techniques for damage detection. Morgenthal et 
al. (2019) used a combination of tailored point cloud analysis algorithms, a pseudo-algorithm to 
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compute viewpoints on an offset surface, and a structure-from-motion (SfM) algorithm to detect 
anomalies in concrete bridge structures. To maintain the main geometric properties of images 
without any distortion, preprocessing was performed on the images before feeding them into the 
model. Photogrammetric 3D reconstruction and anomaly detection were conducted on cracked 
piers based on the processed images. The 3D point cloud was converted into a 3D surface model 
to map anomalies with exact dimensions and locations. The imaging geometry obtained from the 
photogrammetric analysis allowed the characterization of cracks and localization of anomalies 
on bridge surfaces. Khaloo et al. (2018) used a multiscale photogrammetric 3D scene 
reconstruction technique to generate a highly accurate and dense 3D point cloud of a bridge 
using UAV-acquired images and a hierarchical dense SfM algorithm. The study showed that the 
developed inspection methodology provided superior 3D models with the accuracy required to 
detect defects. Among the instances were critical structural defects, including damaged chords, 
splits in timber elements, and loose bolt connections that were also visually confirmed. Figure 
2.5 compiles the SVM and classification-based algorithms discussed in this section. 

 
Figure 2.5. Overview of SVM and classification-based algorithms used to detect bridge 

damage 
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One of the earliest applications of machine learning to image-based crack characterization 
involved the use of an unsupervised clustering technique, K-means clustering, a method that 
partitions data points into distinct clusters. Oliveira and Correia (2013) proposed a system that 
employed unsupervised learning to classify cracks based on their visual attributes. The method 
involved capturing images and applying K-means clustering to group pixels into distinct clusters 
representing different crack types. While achieving a relatively high F-measure of 93.5%, the 
system faced challenges in accurately detecting narrow cracks.  

Logistic regression, a statistical classification method, has also been employed in bridge damage 
detection. Landstrom and Thurley (2012) developed a system for detecting cracks. After 
applying morphological image processing to extract crack segments, logistic regression was used 
to classify these segments as cracks or non-cracks. The system achieved an overall accuracy of 
over 80%.  

ANNs have shown promise in overcoming the challenge of fragmented cracks in images (Kankar 
et al. 2012, Wang and He 2007). Wu et al. (2016) introduced the MorphLink-C method to 
connect discontinuous crack segments using dilation and thinning operations. An ANN was then 
employed to classify the resulting connected crack structures as either cracks or non-cracks. This 
approach demonstrated improved classification accuracy compared to more traditional methods. 
Unlike deep learning models, classical ML methods do not rely on neural networks but instead 
use handcrafted features and statistical approaches.  

Classical ML models provide transparent decision-making, making it easier to understand their 
predictions. They often require fewer computational resources and are more straightforward to 
implement. While these classical algorithms played a crucial role in early bridge damage 
detection, they faced certain limitations. Most methods had limited crack characterization. They 
focused on binary classification (crack/non-crack) with limited ability to categorize cracks based 
on severity or type. They often relied heavily on image preprocessing techniques, which could be 
sensitive to factors like lighting or noise (Lee and Wei 2010). Supervised learning methods like 
ANNs typically require large, well-labeled datasets for effective training, which can be 
expensive and time-consuming to acquire (Feng et al. 2017). 

2.5 Recommendations for Real-World Applications 

2.5.1 Recommendations Based on Damage Types and Characteristics 

Based on the available literature, a main area of research and development in the context of 
automated bridge condition assessment is crack detection, with many studies that have been 
dedicated to the use of AI/ML techniques for detecting cracks in various bridge components. 
Among the measures of interest, the length, width, average width, maximum width, orientation, 
and continuous centerline of cracks with different widths and angles have been investigated to 
date. Fatigue-induced crack detection has also been an active area of research, with vision-based 
methods holding promise for automated inspections over time. Among the relevant studies, 
Wang et al. (2020) presented a machine vision approach using image processing techniques to 
locate fatigue-induced cracks in steel bridges. The developed approach was able to detect cracks 
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over 1 mm in length. However, from the current literature, detecting small surface cracks has 
remained challenging for vision-based methods. Limitations stem from image resolution, lighting 
conditions, and surface textures, which can obscure hairline cracks. While progress has been 
made on laboratory samples, real-world conditions introduce further difficulties. As a potential 
solution, computer vision has been proposed to be combined with NDE methods to improve the 
detection of surface and subsurface cracks.  

In addition to cracks, the available studies have explored the use of computer vision to detect 
other forms of damage in bridge structures. Concrete spalling, which can expose the embedded 
rebars, has been investigated through techniques like the texture analysis of surface images. 
Exposed rebars themselves have been detected by training AI/ML models on rust patterns and 
rebar shapes. Weathering damage, such as efflorescence, has been investigated using color-based 
image processing. Capturing water leakage has been another area of study to evaluate this cause 
of deterioration over time. Similarly, damage to expansion joints and seals can be located by 
boundary detection and monitoring the changes. While the current methods show promise in 
controlled laboratory environments, challenges arise in real-world settings due to occlusion, 
lighting variation, and material inconsistencies. Hence, robust detection and localization of the 
listed defects still prove difficult. The issue can be magnified given the diversity of structural 
materials, damage types, and imaging conditions. In the meantime, continued research has 
yielded practical solutions to address the standing issues and assist human inspectors in bridge 
condition assessment.  

Current studies primarily focus on single defect modes, but a few studies (e.g., Arong et al. 2020, 
Chun et al. 2021) have investigated multiple instances of damage, such as corrosion and water 
staining, and multiple forms of damage, including spalling and rebar exposure. While the 
relevant studies have identified and located different types of damage (with various levels of 
accuracy), some have quantified the extent of damage, specifically where cracks, spalling, 
corrosion, and joint gaps are present. Quantification of the damage severity, not just detection, is 
a critical task for planning maintenance and repair activities. With only a few studies available in 
this domain, additional effort is needed on capturing the extent of damage in a variety of 
materials, components, and details that exist in bridge structures. Efforts have also been made to 
expand the damage types that can be detected (beyond cracks, spalling, corrosion, and leakage). 
However, progress is still limited, especially when dealing with small-size defects.  

For the assessment of damaged regions, some studies have used pixel-based methods and 
conversion factors from pixels to millimeters/inches or square millimeters/inches. Additional 
software products, such as ImageJ, have been employed to count the number of pixels in the 
damaged regions in each image. This has been useful to determine the extent of damage in 
instances like rebar corrosion and concrete spalling. Corrosion quantification, in particular, has 
been performed by measuring the height and width distributions of the corrosion pixels or the 
area of the corroded region. There are also studies that have used image segmentation and deep 
learning models to measure gap width and size. Such measurements, when used on appropriate 
images captured from bridge components, help quantify various types of damage and inform 
repair and maintenance decisions.  
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2.5.2 Recommendations for Alternative Image and Data Collection 

For the automated detection, localization, and measurement of damage using AI/ML techniques, 
image samples or datasets are required as inputs for AI/ML algorithms. Images are commonly 
captured by human inspectors, UAVs, and UUVs at different angles and resolutions under 
different lighting conditions. High-quality image datasets are critical to train and validate the 
predictive models for damage detection. Hence, access to a variety of images for different defect 
types is key for robust algorithm training and testing. Overall, standardized datasets collected 
under diverse real-world conditions enable progress in the vision-based assessment of bridge 
structures.  

From the current literature, image-based inspections have been performed with various cameras, 
including RGB, depth, multispectral, and high-resolution cameras. RGB cameras are a common 
and economical option, but they have limitations in capturing subtle surface defects and material 
conditions. Depth cameras add 3D structural information to aid damage localization and 
measurement. However, the resolution of such images can be lower than that captured by RGB 
cameras. High-resolution cameras, especially in real-world settings, are critical to capture fine 
details like microcracks. On the other hand, very high-resolution pictures can pose challenges in 
terms of file transfer and storage. Beyond the hardware specifications, factors such as camera 
stability, calibration, and controlled light contribute to the quality and accuracy of an automated 
damage analysis. Some studies have used multiple cameras to capture images from different 
angles. This is to obtain a complete view of the subject or scene being photographed. To cover a 
full view of a bridge component, overlapping images can provide a wide overall view. Some 
challenges with using multiple cameras can include the complexity of setup and synchronization, 
the processing and storage of additional data, and difficulty merging and aligning images from 
different viewpoints.  

It should also be noted that bridges are large structures, and some areas may be hard to reach. 
Moreover, lighting consistency may not exist across different bridge components, depending on 
the time and weather conditions. Shadows and glares can also obscure the damaged regions. 
Hence, advanced cameras and image processing methodologies can become necessary to 
generate appropriate input for detecting damage in various bridge components. 

2.5.3 Recommendations for Damage Detection Algorithms 

There are several considerations in using AI/ML techniques to detect damage in bridge 
components. Object detection algorithms, such as Faster R-CNN, can be used to identify and 
localize damage in images (Deng et al. 2021), but they require extensive labeled bounding boxes, 
which can be time-consuming to collect. Data augmentation and generative models, such as 
generative adversarial networks (GANs), can synthesize damage examples from limited data but 
at the risk of not mimicking the diversity of damage in real-world instances. Multimodal deep 
learning methods hold promise for enhanced bridge damage detection, leveraging various image 
data. They, however, need to be tailored to the available datasets and problem constraints to 
ensure their overall success. This has introduced several opportunities for additional research and 
development.  
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A main aspect to consider with AI/ML algorithms is the availability and quality of training data. 
An AI/ML algorithm can only learn to detect bridge damage instances if it is trained on a large 
and diverse dataset of bridge images with labels indicating the location and severity of damage. 
However, such datasets may not exist, or the quality of the annotations may vary depending on 
the expertise of the annotator. This can lead to biases in the training data, which can result in 
inaccurate or unreliable predictions. Additionally, obtaining high-quality annotated datasets can 
be expensive and time-consuming. Hence, recommendations have been made on using 
techniques, such as cropping, rotation, color/contrast shifting, and noise addition, to expand the 
usable training data. In addition, transfer learning from models pretrained on image datasets like 
ImageNet can be leveraged to extract useful features.  

Another aspect to consider is the generalizability of AI/ML models. A model trained on one set 
of bridge images may not perform well on a different set of images due to variations in lighting, 
angles, weather conditions, and other contributing factors. This can limit the model’s usefulness 
in real-world scenarios, where new images are regularly captured and added to the bridge 
inventory. Transfer learning techniques can adapt pretrained models to new datasets, reducing 
the amount of new data required for training while improving the generalization performance. 
For bridge damage detection, CNNs pretrained on large image classification datasets like 
ImageNet can be effectively utilized. Pretrained models provide generalized feature extraction 
capabilities that transfer well to new domains, as reflected in the relevant studies.  

The interpretability of AI/ML models is another key aspect. While deep learning models have 
shown remarkable accuracy in detecting anomalies, they can be difficult to interpret because of 
the models’ complexities, as the most recent AI/ML models have millions of parameters and use 
multiple nonlinear processing layers. This makes it hard to intuitively follow all transformations 
applied to the input, making it challenging to understand the specific features or patterns that 
AI/ML models use to detect damage. To address this challenge, especially for engineers who 
need to make informed bridge maintenance or repair decisions, interpretability techniques such 
as saliency maps, feature visualization, and attention mechanisms can be used to understand how 
a model makes predictions. Saliency maps help highlight input image regions that were most 
relevant to the model’s prediction. For instance, Zhang et al. (2023) generated gradient-based 
saliency maps for detecting concrete cracks, revealing visual evidence that supports damage 
detection. Interactive model inspection tools like ActiVis and CNN Visualizer also allow users to 
visualize activations and adjust inputs to understand the model’s behavior.  

Besides algorithm details, computational requirements for AI/ML models are in need of 
attention. Deep learning models can be computationally expensive and require large amounts of 
data to complete the training process effectively. This can limit the model’s scalability and make 
it challenging to deploy in resource-constrained environments. Techniques such as model 
compression, pruning, and quantization can be used to reduce the size and complexity of models 
while maintaining their accuracy to a reasonable extent. Among the alternatives, model 
compression techniques like knowledge distillation can reduce a model’s size by training a 
downsized model to mimic an ensemble or large model. By employing this approach, Chen et al. 
(2023) achieved an F1 score of 85.70% and an IoU of 78.22% in crack detection accuracy.  
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Past studies have used different types of CNN for concrete crack detection, surface crack 
identification, concrete surface damage classification, and prediction of the structure’s ability to 
withstand service loads. To improve accuracy, various architectures, such as CDFFHNet, CBNN, 
U-Net, and modified deep hierarchical CNN, have been considered. The choice of architecture, 
however, depends on balancing the performance, efficiency, and application requirements. An 
ensemble combining multiple models can potentially deliver the best overall results. Some CNN 
models are trained using backpropagation stochastic gradient descent methods and validated 
using test sets. Weaknesses of CNNs include overfitting and the need for a large amount of data. 
Transfer learning and synthetic data augmentation have been proposed to improve CNNs’ feature 
extraction and identification performance. In addition, CNNs have been used for detecting 
damage in various bridge components using techniques such as CAL-ISM, YOLOv2, and 
DBCC-Net. These techniques often involve benchmark classification model training, crack 
segmentation, and crack width measurement. The accuracy of these methods varies depending on 
the technique and the type of bridge component. CNNs have also been applied for image 
retrieval and clustering, UAV-aided inspection, and explanatory text generation for damage 
identification and classification in various bridge components. However, some shortcomings of 
CNNs include difficulties in detecting complex damage patterns and high computational power 
requirements. 

In addition to CNNs, SVMs have been used in several studies for damage detection in different 
bridge components, such as piers and decks. The relevant studies have utilized different SVM-
based methods to detect cracks and other instances of damage using various features, such as 
semantic segmentation and shape features. The proposed methods have shown improved 
detection accuracy and reduced false detection rates compared to conventional methods (e.g., 
CDFFHNet, CBNN, and U-Net). However, some limitations related to image quality and 
environmental factors should be considered when developing SVM-based bridge damage 
detection and evaluation methods. While SVMs have shown promise for automated crack and 
damage detection in bridges, some challenges remain in real-world application. Factors including 
lighting conditions, image quality, occlusion, and complexity of damage patterns can affect 
feature extraction and classification performance. Preprocessing techniques, such as image 
enhancement and segmentation, may be needed to improve image quality. Moreover, different 
classification algorithms have been used for damage detection, including random forest, 
CLsModel, LSegModel, HSegModel, and the ensemble max-voting classifier. The results from 
past studies show that the available algorithms can effectively detect damage in bridge 
components. Recommendations for further improvement include combining SVM with other 
techniques like segmentation or feature engineering to improve robustness. The ensemble 
methods that use SVM and deep learning together also hold promise. Overall, SVMs offer 
flexible frameworks well-suited for bridge damage detection, but care should be taken to design 
models that can be generalized to new datasets and conditions. In the meantime, improvements 
in accuracy can be made by using sensitive sensors and correcting for environmental lighting 
conditions. This helps provide a rich information representation that can be leveraged by SVMs. 

For damage detection purposes, computer vision algorithms that are based on image 
segmentation, feature extraction, and nonlinear regression analysis can be utilized. SURF-based 
algorithms have been tested on images taken by a stationary UAV to identify changes in the 
structural components of bridges. Other approaches include traditional edge detection methods, 
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such as the Canny algorithm and photogrammetric techniques. The Canny algorithm has been 
used for bridge damage detection, offering low computational demand, high processing speed, 
and low-contrast edge detection capabilities. The current literature has also explored using 
photogrammetric techniques for damage detection. For this purpose, a combination of tailored 
point cloud analysis algorithms and SfM algorithms has been employed to detect anomalies in 
bridge components. Although these techniques have produced high-quality results, the 
identification task remains challenging in computer vision, requiring large amounts of data. In 
addition, variations in camera lighting or structural design details can limit the accuracy of 
predictions. Nonetheless, these techniques are valuable for improving the inspection process and 
reducing the reliance on human inspectors.  

Figure 2.6 summarizes the steps for bridge damage detection using AI/ML techniques.  

 
Figure 2.6. Recommended steps for bridge maintenance and management based on the 

instances of damage/defects detected using AI/ML techniques 

2.6 Main Findings 

The literature review presented in this chapter provides holistic information about the main 
bridge damage types and characteristics that can be captured through AI/ML algorithms Table 
2.3 summarizes the AI/ML techniques that have been explored in the literature for their ability to 
detect different damage types in bridge components. Various image collection techniques that 
have been used to generate useful inputs for such algorithms were discussed, including practical 
recommendations to address the challenges associated with material characteristics, structural 
details, and environmental conditions. The main AI/ML algorithms that have been used for 
bridge damage detection to date were then discussed in terms of their core capabilities and 
features.  

Several promising research and development directions have been identified for automated 
damage detection in bridges. Among them, the use of UAVs and UUVs presents a great 
opportunity to improve the inspection of hard-to-reach regions of bridge structures. Current 
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UAVs utilize basic visual and LiDAR sensors, but integrating advanced technologies like 
thermal imaging, hyperspectral cameras, and ultrasonic testing can help detect subsurface flaws 
invisible to the naked eye. Autonomous navigation and collision avoidance capabilities must 
progress beyond reliance on Global Positioning System (GPS) connectivity to enable the 
inspection of confined spaces under bridges using onboard sensors. Meanwhile, tethered UUVs 
show promise for underwater inspection of substructures and foundations. Further development 
of UUV mobility and waterproofing and of nondestructive testing payloads suited for concrete 
and steel in turbid waters is critical. Beyond improved sensing, combining UAV and UUV data 
with other inspection inputs within a single planning and visualization framework is expected to 
provide a holistic assessment of bridge conditions above and below water. 

Table 2.3. AI/ML techniques used to detect different damage types in bridge components 

AI/ML Technique 
Bridge 

Component(s) Damage type(s) Reference(s) 
CNN-Based Models 
FCN Steel bridge girder 

steel box girders 
Fatigue crack  Zhai et al. 

2022 
CDFFHNet network composed of three 
main components: (1) VGG-16 feature 
extraction module fused with the channel 
attention mechanism, (2) convolution–
deconvolution feature fusion module, (3) 
multiscale feature fusion holistically 
nested network 

Concrete surfaces Crack  Xu et al. 
2022 

CAL-ISM, which includes four steps: (1) 
pretraining of the benchmark 
classification model, (2) retraining of the 
semi-supervised active learning model, 
(3) pixel-level crack segmentation, and 
(4) crack width measurement 

A column pier in 
the laboratory and 
a bridge test 
 
Mostly piers and 
under the deck 

Crack  Zheng et al. 
2022 

GNN called SuperGlue 
Dense image alignment method (known 
as image registration or RANSAC-flow) 

Two steel beams Corrosion Bianchi et 
al. 2022 

CNNs and CycleGAN Various surfaces Crack, corrosion, and 
water straining 

Munawar et 
al. 2022 

CNN coupled with image visibility 
optimization techniques - 

Varying damage 
types (i.e., cracking, 
weathering, and 
spalling 

Seo et al. 
2022 

CNN and pixel-based length measurement 
algorithm 

Railing posts, 
deck, pier cap, 
column/pier/pile, 
floor beam 

Crack, tilt, split, 
weathering, paint 
failure  
 
Generally, 
discoloration, crack, 
rust, spalling, and 
efflorescence (can be 
classified by CNN) 

Jeong et al. 
2022 
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AI/ML Technique 
Bridge 

Component(s) Damage type(s) Reference(s) 
CNNs (including VGG-19, Inception v3, 
GoogLeNet, and ResNet) - Crack  Mirzazade 

et al. 2022 
CBNN Bridge concrete 

surface 
Crack   Guo et al. 

2021 
Deep learning model that combines CNN, 
GRU, and an attention mechanism  

38 types of 
members, 
including 
main girders and 
floor slabs 

Multiple forms of 
damage (27 types of 
damage) like 
corrosion, cracks, 
degradation of 
anticorrosive on 
bearings, defects of 
base mortar, exposed 
reinforcing bars, 
leaking, and spalling 

Chun et al. 
2021 

Deep convolutional neural network with 
transfer learning, GoogLeNet model 

Bridge concrete 
surfaces 

Crack  
Delamination  

Savino and 
Tondolo 
2021 

CNN - backpropagation stochastic 
gradient descent method 

Concrete surface Cracks Qin et al. 
2021 
 

CNN of U-Net  Expansion joints  Expansion joint gap Kim et al. 
2021 

YOLOv2 network algorithm for crack 
identification in real-world images 

Concrete 
structures 

Crack  Deng et al. 
2021 

DCNN-based damage locating (DCNN-
DL) method using DenseNet architecture 

Steel frames Damaged and 
undamaged steel bars 

Kim et al. 
2021 

CNNs Welding joints of 
a long-span steel 
bridge 

Fatigue crack 
detection 

Quqa et al. 
2022 

Hybrid ENN-IWO for the type of noise 
identification, moth-flame optimization 
algorithm for defect restoration 

- 
Defects  Abdelkader 

et al. 2020 

Convolutional network and a naive Bayes 
data fusion (NB-FCN) model 

Bridge 
substructures 

Crack  Li et al. 
2020 
 

Four feature points algorithms (FAST, 
ORB, SIFT, and SURF) - Fatigue crack Kong et al. 

2020 
Cascade crack recognition method 
including crack region detection, crack 
semantic segmentation, morphological 
close operation, and skeleton extraction 
algorithm 
DCNNs 

U-rib-to-deck 
weld seams 
in OSG bridge 

Fatigue cracks Wang et al. 
2020 
 

Recurrent neural network modeling 
Unsupervised data linking algorithm 

Decks, 
superstructures, 
and substructures 

Deterioration like 
spalling 

Liu and El-
Gohary 
2022 

Deep neural network architecture of U-
Net 

Concrete surfaces Crack Bhowmick 
et al. 2020 
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AI/ML Technique 
Bridge 

Component(s) Damage type(s) Reference(s) 
Vision-based method using transfer 
learning and CNNs 

Partial defects on 
the bridge surface 

(1) Spalling, (2) 
exposed rebar, (3) 
crack, (4) pockmark 

Zhu et al. 
2020 

YOLOv3, an object detection algorithm 
based on CNN 

High-strength 
bolts in long-span 
steel bridges 

Fracture   Zhou et al. 
2019 

Lightweight end-to-end pixel-wise 
classification called SegNet - Crack  

 
Song et al. 
2019 

Neural networks Steel bridges Weathered steel 
corrosion and coating 
erosion 

Elbeheri and 
Zayed 2018 

CNNs Honeycomb and 
concrete bridge 
structures 
 
Aluminum 
honeycomb 
core bonded to 
two aluminum 
skins 

Crack detection Modarres et 
al. 2018 

Vision-based DCNN - Crack  Cha and 
Choi 2017 

Multilayered neural networks (for 
deterioration prediction) 
Genetic algorithm (GA) technique (for 
optimal maintenance plan) 

Slab, girder, 
others 

Cracking, cracking, 
corrosion, spalling, 
and delamination 

Miyamoto 
2013 
 

Support Vector Machine and Classification-Based Algorithms 
SVM-based discriminant generation 
semantic segmentation with Resnet-18 (a 
CNN with 18 layers of depth)  

Concrete surfaces Cracks Mir et al. 
2022 

HML of SVM-based clustering and SVM  Reinforced 
concrete 
components 

Four types of RC 
damage: rebar 
exposure, spalling, 
efflorescence, and 
cracking 

Fan 2021 

SVM Superstructure, 
main girder, 
crossbeam, slab, 
substructure, 
bearing, others 

Peeling and exposed 
steel bar, floating, 
cracking, failure of 
weather joint, 
abnormality of 
transverse 
prestressing of fix 
section, exposed 
anchorage zone, 
reinforced corrosion, 
honeycomb, 
corrosion, free lime, 
water leakage 

Arong et al. 
2020 
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AI/ML Technique 
Bridge 

Component(s) Damage type(s) Reference(s) 
Semiautomatic object-oriented (OBIA) 
supervised ML classification using 
random forests 

RPi RGB camera 
installed upwards 
on UAV images 
with an orientation 
of 45° to the 
zenith view. A 
video recording at 
a resolution of 
1029×702 pixels 
was set to 
automatically 
acquire images 
with a higher 
frame rate (2 fps) 

Five classes: 
drainage, uncovered 
metal bar (UMB), 
oxidized rebar (OR), 
nondamaged 
intrados, and 
nondamaged beam 

Belcore et 
al. 2022 

Computer vision algorithms based on 
image segmentation, feature extraction, 
and nonlinear regression analysis 

RC bridge 
columns 

Column drift, 
cracking, and spalling 
patterns 

Lattanzi et 
al. 2016 

Automatic crack detection method 
including a lightweight classification 
algorithm, a lightweight segmentation 
algorithm, a high-precision segmentation 
algorithm, and a crack width 
measurement algorithm 

Not on bridges but 
can further be 
applied to bridges 
as well 
 
Experiment on a 
two-story building 
and a shaking 
table test 

Crack Meng et al. 
2022 

Classification algorithm of learning vector 
quantization (LVQ) 

Concrete slab Crack  Kusunose et 
al. 2003 

Other Methods 
BMVCI Concrete 

structures 
Cracks  Liu and Gao 

2022 
Canny algorithm, which is a pattern 
recognition technique to recognize the 
edge pixels in the images 

- 
Crack  Malek et al. 

2022 

Computer-vision-based detection 
algorithm consisting of black hat 
transform, Canny edge detector, Gaussian 
blur, and OpenCV functions for 
preprocessing and identifying defects 

Can detect 
damages in piers, 
pier caps, decks, 
beams, etc. 

Concrete surface 
cracks, but it can also 
be used for concrete 
section loss, spalling, 
and delamination 

Perry et al. 
2020 
 

Tailored point cloud analysis algorithms 
containing pseudo-algorithm and SfM 
algorithm 

Concrete 
structures 

Cracks  Morgenthal 
et al. 2019 

Hierarchical dense SfM algorithm 

- 

Connection damage 
on the west truss, 
damaged truss chord 
on east truss, loose 
bolt on west truss 

Khaloo et al. 
2018 
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AI/ML Technique 
Bridge 

Component(s) Damage type(s) Reference(s) 
SURF-based detection algorithm, which 
is one of the most commonly used 
approaches for points of interest (POI) 
detection 

- 

Crack  Aliakbar et 
al. 2016 
 

 

Several limitations must be considered to ensure the robustness and reliability of automated 
bridge damage detection systems and to emphasize the need for further research and 
improvements. One of them is variability in detection performance. The performance of ML 
models, mostly deep learning approaches, for bridge damage detection varies. High accuracy is 
therefore very dependent on the quality and diversity of the training images. Poor quality images, 
for example, those taken in bad light or at low resolution, can badly affect the model’s capability 
to detect the subtle features of damage. This variability therefore has to be dealt with, and high-
quality training datasets representative of real-world scenarios must be curated by researchers.  

The challenges in classifying bridge damage are also significant. First, the damage types could 
be complex and varied, such as cracks, corrosion, deformation, and structural defects. Some 
damage categories really have no clear features to distinguish them from others, and therefore 
correct classification becomes hard. Although deep learning models are highly capable of feature 
extraction, they always suffer when the features are blurred or classes are overlapping. For 
example, it can be difficult to tell different crack or corrosion patterns apart. Research into 
innovative feature extraction methodologies and class-specific architectures to improve 
classification is therefore essential.  

Moreover, most of the ML algorithms that are currently prevalent are based on curated datasets. 
Very seldom do they contain in situ images—that is, photographs taken on site during 
inspections. This can cause a discrepancy between the training data and real bridge damage 
images. In this regard, researchers must collect and annotate in situ images to ensure that the 
training data conform to real-world scenarios and environmental conditions.  

Environmental factors have a huge impact on the detection of bridge damage. Weather 
conditions like rain, fog, or snow influence the quality and visibility of images. The image 
features that show damage might be occluded by raindrops or snow on the camera lens. Seasonal 
changes can similarly produce variations in lighting and cast shadows in an image to change its 
contrast. Moreover, bridges come in different designs, materials, and ages, which can lead to 
further variations in appearance. The variability is such that ML models need to accommodate 
different structural elements (beams, columns, cables) that exhibit different damage patterns. 
Research is required in transfer learning so that models are built for varying environmental 
conditions and bridge types that have an enhanced capacity for generalization. 

Future research directions for using AI/ML techniques in bridge damage detection must focus on 
developing more accurate, robust, and efficient algorithms to handle various types of data and 
integrating these algorithms with other sensing technologies for more comprehensive damage 
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detection systems. The development of more robust and accurate deep learning models that can 
process various types of image data, such as multispectral or hyperspectral images, is critical to 
improve damage detection accuracy. Key capabilities to enable accurate damage detection 
include specialized neural network architectures to extract relevant spectral features correlated 
with potential defects, in addition to techniques to handle spectral variability from illumination, 
the surrounding environment, and sensor noise while retaining damage-related information. 
Enhanced deep learning models, such as hybrid neural networks that combine CNNs with other 
architectures like recurrent neural networks (RNNs) or transformers, can leverage both spatial 
and sequential data for better damage detection. For instance, a hybrid model could use a CNN to 
analyze the spatial structure of bridge images and an RNN to understand the temporal patterns in 
a sequence of images captured over time, thus improving the detection of progressive damage 
such as corrosion. An example implementation might involve using a CNN to detect initial crack 
formation and an RNN to track the growth of these cracks over time, providing a more dynamic 
and continuous assessment of bridge integrity.  

Another research area in need of attention is the exploration of novel feature extraction methods 
to enhance the detection of subtle damage patterns in bridge images. While existing image 
feature extraction techniques have shown promise for bridge damage detection, they struggle to 
reliably identify subtle or irregular defect patterns. For example, standard methods like SIFT 
often cannot discern hairline cracks or small spalls from background noise and natural color 
variations in bridge materials. This capability is essential to avoid missed detections and false 
positives, especially in real-world applications. Diverse datasets that encompass different 
lighting conditions, viewpoints, and damage scenarios are essential. Researchers can employ data 
augmentation techniques (e.g., rotation, scaling, flipping) to create additional training samples. 
Furthermore, super-resolution techniques can enhance low-resolution images, aiding feature 
extraction and classification. 

Several studies state that future research should focus on generating more comprehensive 
description sentences from bridge damage images, incorporating details such as the severity and 
grade of damage. This will improve the efficiency of bridge inspections and reduce subjectivity. 
Additionally, efforts should be made to refine crack segmentation annotations by using advanced 
image preprocessing techniques and learning-based background elimination methods to remove 
non-structural components. This will enhance the accuracy and completeness of crack detection. 
Expanding image datasets to include more damage types will also facilitate broader applications 
for identifying various forms of surface damage. Furthermore, developing the capability of 
frameworks to analyze the location and severity of damage, and exploring the detailed properties 
and adaptability of these frameworks for in-service bridge damage detection, will be essential for 
developing comprehensive and practical automated bridge inspection systems. 

Moreover, the development of transfer learning approaches that can leverage pretrained models 
and adapt them to bridge damage detection tasks can be a promising area of research. This 
approach can help overcome the data scarcity problem, especially for detecting infrequent types 
of damage. For example, transfer learning models like VGG, ResNet, and Inception pretrained 
on ImageNet have demonstrated strong performance for crack detection in concrete components. 
To further enhance the effectiveness of transfer learning in bridge damage detection, specific 
research directions include fine-tuning pretrained models for specific damage types, such as 
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adapting a model trained on general object recognition to detect corrosion on steel components. 
Incremental learning can be explored to continuously update the model as new damage types are 
encountered, preventing catastrophic forgetting. Feature adaptation techniques, like domain 
adaptation, can be employed to align the features learned from a pretrained model with the 
specific characteristics of bridge images. Multitask learning can be integrated to simultaneously 
detect multiple damage types, improving efficiency. Finally, combining transfer learning with 
other techniques like data augmentation or active learning can create hybrid approaches for 
enhanced performance.  

Developing more explainable and interpretable models is also essential to facilitate the wide 
reach and practical implementation of AI/ML models. The current models for anomaly detection 
can be difficult to interpret, making it challenging to understand the specific features or patterns 
that the models use to detect damage. Developing models that can provide more detailed 
explanations of their decision-making processes can significantly improve the transparency and 
trustworthiness of the predictions.  

Finally, using AI/ML techniques for real-time damage detection and monitoring can be 
considered as an emerging area of research. This research area can benefit from developing fast 
and efficient algorithms that handle large amounts of data in real time and alert bridge owners 
about potential damage before it becomes critical. Ultimately, the value of automated damage 
detection processes lies in enabling quantitative condition assessment to further inform 
preventive and corrective actions. Continued development of automated, vision-based damage 
quantification strategies is key to realizing this potential. Consistent measurement protocols, 
reporting standards, and public datasets would further help provide the required capabilities and 
enhance the condition assessment process.  
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CHAPTER 3: DIGITAL TWIN MODEL DEVELOPMENT 

3.1 Software Products  

There are several software products for creating and manipulating 3D models. Photogrammetry 
is a technique that involves taking measurements from photographs to create 3D models or maps. 
Each product has its own set of features and capabilities, and the choice often depends on the 
specific needs and preferences of the user. Three different popular 3D modeling software 
applications and their capabilities are summarized below.  

3.1.1 Autodesk ReCap Pro 

Autodesk ReCap Pro is a software application developed by Autodesk for creating 3D models 
from laser scans and photographs. It is commonly used in the fields of architecture, engineering, 
and construction for reality capture and modeling purposes. ReCap Pro has the following key 
features: 

1. Reality capture. ReCap Pro allows users to import point cloud data from laser scans and 
photographs to create accurate 3D models of physical spaces and objects. 

2. Registration and alignment. Users can register and align multiple scans or photographs to 
create a cohesive and accurate representation of the scanned environment. 

3. Point cloud processing. The software can handle large datasets of point cloud information, 
enabling users to process and clean up the data to create more accurate and detailed 3D 
models. 

4. Annotations and measurements. Users can add annotations and measurements directly to 
the 3D models, aiding in collaboration and communication among project stakeholders. 

5. Integration with other Autodesk software. ReCap Pro is often integrated with other 
Autodesk software applications like AutoCAD and Revit, allowing users to incorporate 
reality capture data into their existing workflows. 

In short, ReCap Pro is a comprehensive reality capture software application designed to 
transform physical environments or objects into digital 3D models.  

The limitations of using ReCap Pro include the following:  

1. Processing time. The time required for processing point cloud data and generating 3D 
models could vary depending on the Autodesk server. 

2. Hardware requirements. Reality capture software, including ReCap Pro, may have specific 
hardware requirements. Users need to ensure that their computer systems meet these 
requirements for optimal performance. 

3. Accuracy and resolution. The accuracy of the generated 3D models depends on the quality 
of the input data (e.g., laser scans or photographs). In some cases, the level of detail may be 
limited by the resolution of the original scans. 

4. Cost. Autodesk software, including ReCap Pro, typically involves licensing fees. 
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5. Software compatibility. Users may encounter compatibility issues with certain file formats 
or third-party applications. 

3.1.2 Bentley iTwin Capture Modeler 

iTwin Capture Modeler offers the highest fidelity and most versatile desktop capabilities for 
creating reality data to serve as the digital context for design, engineering, construction, and 
operations workflows. It allows the user to produce reality meshes reliably and quickly at any 
scale at the best quality on the market by using photographs or LiDAR point clouds. It is 
available in two versions: iTwin Capture Modeler and iTwin Capture Modeler Center. iTwin 
Capture Modeler Center enables the user to create unlimited clusters to quickly process projects 
as large as cities. iTwin Capture Modeler has the following key features:  

1. Reality mesh creation. The core functionality of iTwin Capture Modeler is centered around 
creating reality meshes. This involves processing input data, such as photographs or LiDAR 
point clouds, to generate detailed and accurate 3D representations of structures. 

2. Photogrammetry and LiDAR support. The software can support both photogrammetry and 
LiDAR data, allowing users to choose between these data sources based on project 
requirements. 

3. High fidelity and accuracy. Given the emphasis on high fidelity and versatility, iTwin 
Capture Modeler is designed to produce reality meshes with a high level of detail and 
accuracy. 

4. Versatility in workflows. The tool offers versatility in supporting various workflows, 
including those related to design, engineering, construction, and operations. 

5. Ability to work at the PC level. The offline mode allows users to continue their work even 
when they are not connected to the Bentley server. 

6. Implementation of AI capabilities. AI can assist in automatically annotating objects or 
features in the captured data and can even classify different elements within the reality mesh. 

The limitations of using iTwin Capture Modeler could be listed as follows:  

1. Cost. Licensing costs and subscription fees can be a potential disadvantage. 
2. Hardware requirements. Users with less powerful hardware might experience limitations in 

their ability to work with or process data. 
3. Compatibility issues. There could be compatibility issues with certain file formats or with 

other software applications used in the same workflow. 
4. Ground sampling distance (GSD). A lower GSD, achieved with higher-resolution imagery 

that may not be available to all users, contributes to better accuracy and detail in the final 
model. 

5. Accuracy and resolution. The sensors used for capturing data, whether LiDAR scanners or 
cameras for photogrammetry, have inherent limitations in terms of spatial resolution. 
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3.1.3 Pix4D 

Pix4D is a software suite that specializes in photogrammetry and drone mapping. It is widely 
used in various industries, including agriculture, construction, surveying, and environmental 
monitoring. The software allows users to process drone-captured imagery and generate detailed, 
accurate, and georeferenced 3D models, point clouds, and maps. Below are some features of 
Pix4D: 

1. Photogrammetric accuracy. Pix4D is known for providing accurate and high-resolution 3D 
models and maps through photogrammetric processing of drone-captured imagery. 

2. 3D model generation. Pix4D allows users to create detailed 3D models of structures and 
landscapes, providing a rich visual representation of the surveyed area. 

3. Drone mapping integration. The software is specifically designed to work seamlessly with 
drone-captured images, making it a powerful tool for drone mapping applications. 

4. Multispectral and thermal processing. Pix4D supports the processing of multispectral and 
thermal imagery, making it suitable for applications such as precision agriculture and 
environmental monitoring. 

5. Geographic information system (GIS) integration. Pix4D integrates with GIS tools, 
allowing users to incorporate Pix4D-generated data into their existing GIS workflows. 

The limitations of using Pix4D are as follows: 

1. High-end equipment/expertise required for large-scale mapping. While Pix4D can work 
with consumer cameras and drones, surveying and mapping large areas may require 
specialized higher-end equipment and skilled operators to achieve the accuracy required for 
engineering and computer-aided drafting (CAD) applications. 

2. Significant amount of time required for postprocessing. Depending on project scale, 
processing the images into a meshed, textured 3D model can take many hours or even days 
on a PC workstation with large datasets and a high desired accuracy. 

3. Software licensing costs. While Pix4D does offer trial options, multiseat licensing and 
purchasing options for commercial use can become quite expensive for long-term access. 
Subscription costs may also apply. 

4. Optimization required for outputs. Raw outputs from Pix4D often require importation into 
other software for optimization and conversion to other CAD/geospatial file formats for 
utilization in downstream workflows. 

3.1.4 Summary 

Each of the three software applications caters to specific industry needs and contributes to the 
evolving landscape of digital modeling and spatial intelligence. Pix4D is best for drone mapping 
and photogrammetry, transforming aerial imagery into precise 3D models with applications 
across agriculture, construction, and environmental monitoring. iTwin Capture Modeler, 
developed by Bentley Systems, focuses on creating high-fidelity reality data through versatile 
desktop capabilities and produces detailed 3D representations using photographs or LiDAR point 
clouds, which is particularly beneficial for design and engineering workflows. Autodesk ReCap 
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Pro specializes in point cloud processing, enabling the generation of detailed 3D models from 
laser scanning and photogrammetric data, and is prominently used in architecture and 
construction. 

3.2 Data Collection  

Utilizing drones for image collection has stood out as a transformative technology in bridge 
assessment. Specifically, drones with high-resolution cameras offer a unique advantage that 
facilitates unparalleled data acquisition when applied to bridge mapping. This innovative 
approach involves meticulous mission planning, where flight paths are strategically designed to 
capture comprehensive imagery of the bridge and its surroundings. As the drone soars over the 
structure, it systematically collects geotagged images, providing a detailed and accurate 
representation of the bridge and its immediate environment. This dataset becomes a foundation 
for advanced photogrammetric processing, enabling the creation of precise 3D models and point 
clouds. Integrating drone technology in bridge image collection enhances efficiency and timely 
and cost-effective assessments of structural integrity, aiding in maintenance planning, structural 
analysis, and decision-making processes within civil engineering and infrastructure management. 

Two types of drones were used to collect the image datasets used in this study, DJI Mavic 2 Pro 
and DJI Phantom 4 RTK (Figure 3.1) 

 
(a) 

 
(b) 

Figure 3.1. DJI drones: (a) Mavic 2 Pro (b) Phantom 4 RTK 

Both drones are widely used in various professional fields. The specifications and features for 
each drone are listed below. 



 43 

The DJI Mavic 2 Pro has the following specifications and features: 

1. Camera quality. Mavic 2 Pro can capture 20-megapixel photos and 4K videos at 30 fps, 
Table 3.1 presents the camera specifications.  

2. Flight time. Mavic 2 Pro has a maximum flight time of 30 minutes. However, it is important 
to note that flight time can vary based on factors such as weather conditions, payload weight, 
flight style, and battery age. 

3. Flight speed. Mavic 2 Pro offers a maximum flight speed of 44.7 mph. However, a high 
speed is not needed to allow for detailed data collection. On the other hand, the data 
collection should be fast enough to cover the target bridge components within a reasonable 
time window. 

4. Flight mode. Mavic 2 Pro has different operational modes and settings, such as the 
following: 
a. ActiveTrack. This mode allows the Mavic 2 Pro to automatically follow a subject while 

keeping it in the frame. It is improved from the previous version with better trajectory 
prediction and obstacle sensing. 

b. HyperLapse. In this mode, the drone captures stable aerial time-lapse videos. Different 
sub-modes can be chosen, like Free, Circle, Course Lock, and Waypoint, to create 
dynamic time-lapse footage. 

c. QuickShots. QuickShots are preprogrammed flight paths that record short cinematic 
video clips. Modes include Dronie, Circle, Helix, Rocket, Boomerang, and Asteroid. 

d. Point of interest (POI). The drone circles around a selected subject, keeping it in the 
center of the frame. This is useful for capturing smooth, circular shots around a point of 
interest. 

e. Tripod mode. This mode reduces the drone’s speed and sensitivity, making it easier to 
get stable, precise shots, especially in tight spaces or when close to the ground. 

f. Cinematic mode. Cinematic mode slows down the Mavic 2 Pro’s speed and braking for 
smoother shots and more cinematic footage. 

g. Terrain follow mode. This mode allows the drone to maintain a consistent altitude above 
ground level, which is particularly useful in areas with varying terrain. 

Table 3.1. Mavic 2 Pro camera specifications 
Camera Specification Range 

CMOS 1” 
Megapixels 20 

Lens f/2.8–f/11 
FOV 77o 

Electronic rolling shutter 8–1/8000 s 
Resolution 5472 × 3648 
ISO range 100–12,800 

 

The DJI Phantom 4 RTK has the following specifications and features: 
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1. Camera quality. The Phantom 4 RTK is equipped with a high-resolution camera that is 20-
megapixel. Table 3.2 presents the camera specifications. 

2. Flight time. The drone has an approximate flight time of up to 30 minutes under ideal 
conditions. This duration can vary based on factors like wind conditions, flight speed, and 
additional payload. 

3. Flight speed. The maximum flight speed is about 31 mph in P-mode (Positioning mode) and 
36 mph in A-mode (Attitude mode). The speed can be adjusted according to the requirements 
of the mapping or surveying project. 

4. Flight modes. Phantom 4 RTK has different operational modes and settings, such as the 
following: 
a. RTK module. The integrated RTK (Real-Time Kinematic) module enhances the 

positional accuracy of the drone, which is essential for precise geotagging of aerial 
images. 

b. GS RTK app. This app allows for intelligent flight planning and is specifically designed 
to work with the Phantom 4 RTK. It includes features like Photogrammetry and 
Waypoint Flight. 

c. Obstacle sensing. The Phantom 4 RTK can detect and avoid obstacles in its path, which 
is particularly useful in complex environments. 

d. Terrain follow. This mode enables the drone to maintain a consistent height above the 
ground while adapting to varying terrain, which is crucial for surveying and mapping 
uneven landscapes. 

Table 3.2. Phantom 4 RTK camera specifications 
Camera Specification Range 

CMOS 1” 
Megapixels 20 

Lens f/2.8–f/11 
FOV 84o 

Electronic rolling shutter 8–1/8000 s 
Resolution 5472 × 3648 

ISO range (manual) 100–12,800 
 

3.3 Data Quality and Resolution  

The quality and resolution of images captured by drones are regarded as essential factors in the 
effectiveness of bridge inspections and 3D modeling. For the structural assessment and 
maintenance of bridges, detailed and high-resolution imagery is necessary for identifying 
potential issues such as cracks, corrosion, or other structural defects. Conversely, operating the 
drone at a greater distance ensures safety and provides a broader view of the bridge, which is 
beneficial for overall structural assessments. However, this may compromise the ability to 
capture minute details. Therefore, determining the optimal distance is crucial. This distance is 
often dictated by the drone’s camera specifications, the desired resolution, and the need to 
balance detailed inspection with operational safety. In Table 3.3, a comparison of the current 
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study with the literature on both resolution and the number of images used in the dataset is 
presented. 

Table 3.3. Number of images and resolution from the literature 
Reference Images in Dataset Resolution (Pixels) 

Cha et al. (2017) 277 4,928 × 3,264 
Li and Zhao (2019) 1250 4,160 × 3,120 
Feng et al. (2019) 435 7,952 × 5,304 
Seo et al. (2018) - 5,472 × 3,648 

Morgenthal et al. (2019) 1250 0.6 mm/pixel 
Perry et al. (2022) 250 4,928 × 3,264 
Zheng et al. (2022) 175 6,000 × 4,000 
Liu and Gao (2022) 150 5,472 × 3,648 
Malek et al. (2022) 15 3,904 × 2,196, 2,048 × 1,152 

Mir et al. (2022) - 2,592 × 1,944 
Zhai et al. (2022) 240 4,928 × 3,264, 5,152 × 3,864 
Deng et al. (2021) 602 5,152 × 3,864, 1,280 × 720 
Bao et al. (2021) 458 3,024 × 4,032 
Bao et al. (2021) 200 4,928 × 3,264 

Present study 177 5,472 × 3,648 
 

The first dataset consisted of 177 images received from the Mavic 2 Pro drone and 111 images 
received from the Phantom 4 RTK drone. The quality for both datasets was 5,472 × 3,648 pixels. 
Figures 3.2 and 3.3 present an example from the Mavic 2 Pro, while Figures 3.4 and 3.5 present 
an example from the Phantom 4 RTK. The Mavic 2 Pro drone flew at a distance of 50 ft from the 
bridge, while the Phantom 4 RTK drone covered the area from a distance of about 180 ft. 
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Figure 3.2. Example of the dataset from the Mavic 2 Pro drone 

 
Figure 3.3. Example of an image captured by Mavic 2 Pro drone from a 50 ft distance 
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Figure 3.4. Example of the dataset from the Phantom 4 RTK drone 

 
Figure 3.5. Example of an image captured by Phantom 4 RKT drone from a 180 ft distance 
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The difference in flying distances from the bridge between the Mavic 2 Pro and the Phantom 4 
RTK presented a valuable opportunity for comprehensive data collection. Additionally, this 
difference permitted a meaningful comparison of the quality of the 3D models generated by each 
drone. By examining how much detail was captured by the cameras at different distances, 
insights into the precision and level of information provided by each drone could be gained.  

The comparison between Figure 3.3 and Figure 3.5 in this study highlights the impact of drone 
height on the ability to capture defects in a bridge. In Figure 3.3, the closer proximity of the 
drone to the bridge allowed for more detailed capture of the bridge’s structural defects, such as 
cracks. A contrast is observed when Figure 3.3 is compared to Figure 3.5, where the drone was 
positioned farther away (180 ft), which resulted in less detailed capture of the bridge defects. The 
importance of drone positioning in accurately generating and assessing a 3D model is underlined 
by this difference, which demonstrates that closer aerial flight reveals more accurate and critical 
details and assists in the generation of an accurate model. 

Incorporating the optimal drone distance into an inspection strategy significantly enhances the 
effectiveness of drone-based bridge inspections and generates precise 3D models. This ensures 
that the images captured are of high quality and resolution, providing a reliable basis for accurate 
assessment and informed decision-making in bridge maintenance and safety protocols. 

3.4 Generated 3D Models 

In this project, the focus was on the 3D modeling of bridges, and by utilizing Bentley iTwin 
Capture, Pix4D, and Autodesk ReCap Pro, high-quality 3D models derived from the images 
captured by drones were successfully generated for the bridge in the case study. This integration 
of classification software not only ensured a more detailed and accurate representation of the 
bridge’s current condition but also enabled a comprehensive analysis of its structural condition. 
The 3D models were anticipated to provide a multidimensional perspective, allowing a more 
thorough examination of expected damage and areas requiring maintenance that were missed or 
were difficult to reach. 

The present study focused on the generation of 3D models for the case below. Drones were used 
on the bridge to take detailed, high-quality images, and then three 3D models of the bridge were 
created in each software application. This provided a better understanding of the 3D modeling 
capabilities and how these features could be utilized.  

3.4.1 Case Study Description 

A bridge characterized by its unique construction and current condition was examined. The 
bridge, built in 1922, is located 19 miles south of Ames, Iowa. It features a robust design with 
steel beams supported by high concrete abutments and topped with an RC deck. Spanning 63 ft 
in length and 44 ft in width, this bridge has been an integral part of the region’s infrastructure for 
101 years. Despite its age, it maintains a condition rating of fair. In 2021, it was reported to 
handle an average daily traffic of 6,800 vehicles. However, the bridge shows signs of wear and 
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tear typical of its age and usage, including cracks in its structure, concrete spalling, rusting of 
steel components, and peeling paint. Figure 3.6 presents images of the bridge examined in this 
case study. 

  

  
Figure 3.6. Captured images of the case study bridge 

The first software application used to generate a 3D model of the current case study bridge was 
Bentley iTwin Capture; the software showed a high-quality real 3D model of the bridge, and all 
details appeared in the model. Moreover, the model exhibited a real view of the bridge with a 
walk-through feature that facilitated the inspection and damage detection process. Figure 3.7 
presents the 3D model from Bentley iTwin Capture.  
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Figure 3.7. 3D model by Bentley iTwin Capture 

Bentley iTwin Capture has powerful measurement capabilities for characteristics such as 
location, distance, area, and volume. Incorporating and utilizing these capabilities with high-
quality 3D models allows for a safe and fast inspection and damage detection process. In order to 
represent the use of these measurement tools in Bentley iTwin Capture, some defects were 
measured in the generated bridge. Figures 3.8 to 3.11 present examples of the use of 
measurement tools in Bentley iTwin Capture. 
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Figure 3.8. Measurement of the depth of a pothole 
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Figure 3.9. Measurement of the length of a crack 
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Figure 3.10. Measurement of the area of a defect 
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Figure 3.11. Measurement of the width of a crack 

The second software package used to generate a 3D model was Autodesk Recap Pro. Using this 
software, we generated another 3D model for the same case study bridge. The model was of 
lower quality than the model generated by Bentley iTwin Capture, and the resolution and details 
of the bridge were not as clear as those in the model generated by Bentley iTwin Capture. Figure 
3.12 presents the model generated by Autodesk ReCap Pro. 
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Figure 3.12. 3D model generated by Autodesk ReCap Pro 

The third software application utilized to generate a 3D model was Pix4D. The model generated 
by this software had the lowest quality of all the models generated for the case study. The details 
of the defects almost vanished, and the model looked like a pixel model. Figure 3.13 presents the 
model generated by Pix4D. 
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Figure 3.13. 3D model generated by Pix4D 

3.4.2 Case Study Results 

Figure 3.14 shows a comparison between the 3D models generated by the three software 
applications for the case study bridge. From Figure 3.14, we can notice the difference in model 
quality between the three software applications, even though all three used the same dataset to 
generate their models. Bentley iTwin Capture generated the highest-quality and most accurate 
model among the three software applications.  
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(a) 
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(b) 
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(c) 

Figure 3.14. Comparison between (a) Bentley iTwin Capture, (b) Pix4D, and (c) Autodesk 
ReCap Pro 

During the generation of the bridge models, an issue was encountered in the substructure of the 
bridge, as all three software applications were unable to model this section. The reason for this 
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was attributed to the flying mode of the drones used to capture the image dataset. As mentioned 
previously, there are several flying modes available for drones. The sequence of the yellow 
boxes in Figure 3.15 represents the drones flying under automatic mode. In contrast, Figure 3.16 
represents the substructure of the bridge, with the orange boxes indicating the images that were 
not used to generate the 3D model. This occurred because the images in the orange boxes were 
taken under manual flying mode, where no sequence or overlap between the images was present. 

 
Figure 3.15. Image locations and positions used to generate the 3D model 

 
Figure 3.16. Image locations and positions not used to generate the 3D model 
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3.5 AI Implementation  

The integration of AI technology into Bentley iTwin Capture represents a significant 
advancement in the field of infrastructure management. By preparing and training AI algorithms, 
software packages like Bentley iTwin Capture can automate and enhance various aspects of their 
operations. AI can be utilized for more efficient and accurate feature recognition in captured 
data, improving the identification of defects and anomalies during inspections. In this study, we 
applied AI capabilities to detect potholes and cracks in the case study bridge following the steps 
outlined in the iTwin Context Capture manual. Figures 3.17 and 3.18 illustrate the before and 
after results of applying the detection model. The software learns from provided pretrained 
weights to detect cracks (represented by blue lines) and potholes (indicated by green shadows).  

 
(a) 

 
(b) 

Figure 3.17. 3D model of the bridge before applying the detection algorithm 
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(a) 

 
(b) 

Figure 3.18. 3D model of the bridge after applying the detection algorithm 

The detection method employed in this case study was based on semantic segmentation, a 
technique that trains the AI to detect and classify each pixel in an image. This approach resulted 
in high accuracy, as evident in Figure 3.18. The pixel-level detection allowed for precise 
identification and localization of defects, providing a detailed and comprehensive analysis of the 
bridge’s condition. This AI-driven approach significantly enhances the inspection process by 
automating the detection of structural issues that might be overlooked in traditional visual 
inspections. It not only improves the efficiency of infrastructure management but also 
contributes to more accurate and reliable assessments of structural integrity, ultimately leading to 
better-informed decisions regarding maintenance and repairs.  
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CHAPTER 4: AUTOMATED DAMAGE DETECTION 

4.1 Detection Model 

Damage detection through the use of automation technology takes place after damage 
assessment. As mentioned in Chapter 2, researchers have implemented various techniques such 
as CNN, AI, and ML to predict and highlight defects in images. Furthermore, UAVs are utilized 
in multiple aspects of the damage detection and assessment process because they can be 
controlled from a safe distance. 

4.2 Data Sources 

High-quality images are crucial for damage detection models because they ensure a precise and 
realistic view of defects, especially in locations with low illumination. In this study, a damage 
detection model was developed using the same images that were captured by drones for use in 
the digital twin model. These are high-quality images with a resolution of 5472 × 3648 pixels, 
and even with zoom-in into the images, the details in the images are still clear. 

The bridge images that were available were utilized to annotate different damage types in order 
to create a customized dataset. Several defects like cracks, concrete spalling, corrosion, peeling 
paint, etc. were identified. The annotation was performed using the tools available in Roboflow, 
a software platform designed to assist in the development and optimization of computer vision 
models. Roboflow provides many tools for annotating images, such as the ability to label objects 
within images using bounding boxes or other methods. Moreover, Roboflow can automatically 
augment images (e.g., by changing brightness, cropping, or resizing) to increase the diversity of 
the dataset.  

Using Roboflow to annotate images involved multiple steps. First, the images were uploaded to 
Roboflow by creating a new project. Then, the type of annotation needed for the project was 
selected, such as bounding boxes or polygons. Next, each image was manually annotated, for 
example, by drawing boxes around objects and labeling them with the types of defects. After all 
of the images were annotated, the annotated data were exported in several formats that suited the 
needs of this project. This exported data were then ready for training or testing machine learning 
models. Figures 4.1 and 4.2 present examples of images before and after annotation. 



 64 

 
(a) 

 
(b) 

Figures 4.1. Example of bridge substructure image before annotation 
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(a) 

 
(b) 

Figures 4.2. Example of bridge substructure image after annotation 
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4.3 Model Architecture 

4.3.1 YOLOv7 

The basis of the model developed in this study was YOLOv7, a fast and accurate object detection 
model. YOLOv7 is a CNN model that identifies and classifies various elements in a very short 
period, making it highly important in applications where real-time inspection is critical. This 
technology is widely used in various fields, such as autonomous vehicles, security surveillance, 
and, in our case, structural analysis of bridges. Its ability to analyze complex-image and detect 
defects, such as structural cracks, makes it a valuable tool in ensuring safety and efficiency in 
various engineering and technological aspects. YOLOv7 features several key components: 

1. Backbone network. This is used for extracting features from images. Different options are 
available, each balancing accuracy and speed. 

2. Neck and head. The “neck” aggregates features of various sizes, while the “head” predicts 
bounding boxes and object classes. 

3. Anchor boxes. These are predefined boxes that the model adjusts to fit detected objects, 
aiding in the recognition of different shapes and sizes. 

4. Spatial pyramid pooling (SPP) and pyramid attention network (PAN) integration. 
These enhance feature extraction and improve detection across scales. 

5. Loss function. This includes components for bounding box regression and class prediction, 
which are crucial for accurate detection. 

6. Transfer learning. This often involves pretraining on large datasets and fine-tuning for 
specific tasks, boosting performance. 

7. Optimizations. These balance speed and accuracy, making YOLOv7 suitable for real-time 
applications. 

8. Continuous evolution. These are regular updates that improve the effectiveness of object 
detection tasks. 

The basic and original network of the YOLOv7 structure is shown in Figure 4.3. Each image 
uploaded to the model goes through three steps: Initial Processing (Backbone), Feature 
Extraction (Neck), and Classification of Objects (Head).  

1. Initial Processing (Backbone). This is the part of the network that performs the initial input 
image processing. It typically consists of a series of convolutional layers and pooling layers, 
which are designed to extract features from the image. Here, the backbone processes the 
input image down from its original through various layers (denoted as Convolution-
BatchNorm-ReLU [CBR], Extended Efficient Layer Aggregation Network [E-ELAN], and 
Max Pooling), reducing the locative dimensions while simultaneously raising the depth of 
features in the input data. 

2. Feature Extraction (Neck). This part of the model basically refines the features extracted in 
the first step and prepares them for the final step, which is detection. It might include 
additional convolutional layers and often uses techniques to combine features of different 
scales for multiscale feature learning. In each image, there are operations like Cross Stage 
Partial Network (CSPNet) and SPP-Block, which is a series of pooling and convolutional 



 67 

layers, concatenation operations (cat), and finally up-sampling to increase the resolution of 
the features in the image. 

3. Classification of Objects (Head). In this step, the head of the network is responsible for 
making the object predictions. This includes locating and classifying objects in the case of an 
object detection network. It typically includes convolutional layers (repetitive 
parameterization of convolutions (Re-ParConv) and outputs the final predictions. 

 
Figure 4.3. Original YOLOv7 network structure 

4.3.2 Augmented Damage Detection Model 

To address the limitations of existing damage detection models, a new model was needed with 
the ability to not only detect damage but also quantify its severity. Many current models are 
effective at identifying structural issues, but they often fall short when it comes to accurately 
measuring the extent of the damage. This gap in capabilities highlights the need for a more 
advanced approach, particularly in applications where precise quantification is essential for 
decision-making and preventive maintenance.  

To this end, the capabilities of the YOLOv7 object detection model were successfully improved 
and extended by modifying and enhancing its architecture to test input images of arbitrary 
resolutions. Instead of being constrained to processing and analyzing fixed-size 640 x 640 
images, the newly modified model is now capable of handling inputs of any image resolution. To 
achieve this, additional layers were introduced and compiled to dynamically adapt the matrix 
sizes of the feature maps and tensors propagated through the architecture. These new layers 
ensure seamless adaptation of the model’s internal representations to match the input image 
dimensions. Furthermore, the model was modified to process inputs with randomly varying 
resolutions during training and validation. This enhancement allows the model to learn from and 
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make predictions based on images of various resolutions, increasing its practicality for different 
users. 

The second part of the new model determines the quantification of the defects. After detecting 
and highlighting the defects in the image, the second part of the model determines the number of 
pixels inside the annotated defects using the region-growing algorithm. The region-growing 
algorithm, which is also referred to as the tracking algorithm, is implemented to sort the thinned 
pixels that follow each other within the predicted defect. Figure 4.4 illustrates the tracking 
algorithm.  

 
Figure 4.4. Illustration of region-growing algorithm 

The search directions play a fundamental role in accurately quantifying the number of pixels 
within the predicted damage. As illustrated in Figure 4.4, the algorithm explores the defect 
boundaries in multiple directions: left, right, up, and down. This multidirectional search ensures 
that all connected pixels within the bounds of the predicted defect are captured accurately. The 
process includes identifying the smallest transverse pixel and the longest longitudinal connected 
pixels for the defect.  

After finding the number of pixels for the width and the length, the model converts these results 
through several steps into a real-world dimension, as shown in Figure 4.5. Starting with the 
camera matrix and properties [K],  
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𝑓𝑓𝑦𝑦 = 𝑓𝑓 ℎ
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  (4.3) 

where 𝑓𝑓 indicates the focal length of the camera in both the x and y directions; 𝑠𝑠𝑦𝑦 and 𝑠𝑠𝑥𝑥 
represent the height and the width of the sensor, respectively; h and w represent the height and 
the width of the image, respectively; and (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) is the principal point (optical center) in pixels. 

 
Figure 4.5. Illustration of camera calibration 

The normalized image coordinates (𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛) after the pixel coordinates (𝑢𝑢,𝑣𝑣) are converted using 
the camera matrix and properties [K] are as follows:  
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Knowing the depth 𝑍𝑍𝑐𝑐 between the camera and the object in the image, the model uses the 
normalized coordinates to calculate the camera coordinates as follows:  
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After obtaining the camera coordinates (𝑋𝑋𝑐𝑐, 𝑌𝑌𝑐𝑐, 𝑍𝑍𝑐𝑐), the model implements the inverse of 
extrinsic matrix [R∣t] to convert the camera coordinates to world coordinates: 
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where 𝑟𝑟𝑖𝑖𝑖𝑖 stands for the rotation of the camera coordinate system and 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑧𝑧 represent the 
translation of the camera in the world coordinate system. Finally, the real-world dimensions are 
calculated through the world coordinate system:  
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In summary, the transformation from camera coordinates to world coordinates involves both 
rotation and translation components, considering the camera’s orientation and position in the 
world space. Thus, the final architecture of the proposed model can be represented as shown in 
Figure 4.6. 
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Figure 4.6. New proposed quantification and assessment model 

4.4 Training and Validation 

In order to substantially augment the capabilities of YOLOv7 for defect detection, a meticulous 
training regimen was implemented, capitalizing on an extensive dataset. This dataset, comprising 
over 11,000 images (7,165 images depicting cracks and 4,569 images showcasing spalling 
defects), was pivotal in encapsulating the nuances of concrete surface damage types. Notably, 
some images portrayed multiple defect instances, further enhancing the complexity of the 
training data. Recognizing the constraints of a finite quantity of images, additional relevant 
images were strategically integrated to augment the dataset. This comprehensive dataset was 
essential in equipping the enhanced YOLOv7 model with a thorough understanding of diverse 
defect appearances. 

Moreover, due to the limitations imposed by the finite quantity of available images, particularly 
for certain types of damage, a strategic approach was taken to augment the dataset by sourcing 
additional images from online sources. This step was instrumental in ensuring that the training 
model benefited from a broader spectrum of defect presentations, enriching the dataset and 
providing the YOLOv7 model with a more comprehensive understanding of various 
manifestations of concrete surface damage. 

The dataset, not only vast but also meticulously annotated, included bounding boxes precisely 
marked around the regions exhibiting defects. This level of detail facilitated a streamlined 
training process, allowing the model to rapidly assimilate the necessary knowledge for accurate 
defect detection. The annotations played a pivotal role in accelerating the model’s learning 
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curve, enabling quick adaptation to the intricacies of defect identification. Figures 4.7 and 4.8 
present pre-annotated images for cracks and spalling in concrete, respectively. 

 
Figure 4.7. Pre-annotated images for cracks in concrete (various backgrounds and 

distances)  
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Figure 4.8. Pre-annotated images for concrete spalling (various backgrounds and 

distances)  

A variety of backgrounds, such as concrete, asphalt, and painted walls, were included in the 
dataset to help the model learn to identify objects irrespective of the background. This approach 
is crucial for real-world applications where objects are encountered in various settings. The 
introduction of different backgrounds exposed the model to varying levels of noise and clutter, 
challenging it to focus on the relevant features of the objects of interest. As a result, the model’s 
ability to distinguish between foreground objects and background was improved, reducing the 
likelihood of false positives or negatives. Furthermore, as shown in Figures 4.7 and 4.8, images 
were taken from different distances. The inclusion of images taken at varying distances 
introduced scale and perspective variations, enabling the model to learn how the appearance of 
objects changes with distance. This variation is particularly important for tasks that require the 
recognition of objects of the same class but at different scales or orientations. Figures 4.9 and 
4.10 present the annotated images for cracks and spalling in concrete, respectively. 
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Figure 4.9. Annotated images for cracks in concrete 

 
Figure 4.10. Annotated images for concrete spalling 

Significant computing power is required for building and training AI/ML models for image 
processing, especially when working with high-resolution datasets. Image data are characterized 
by a much higher dimensionality compared to other data types like text or audio, and 
computationally intensive operations, such as convolution and backpropagation, are involved in 
their processing. To train convolutional neural networks efficiently for tasks such as image 
classification, object detection, and segmentation, access to powerful hardware like high-end 
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graphical processing units (GPUs) or tensor processing units (TPUs) is necessary. Rapid 
prototyping and research can be dramatically accelerated with a custom-built desktop 
workstation equipped with multicore central processing units (CPUs) and the latest GPUs, 
leading to a substantial reduction in training times compared to commodity hardware. 

In order to train the developed model, Google Colaboratory (Colab) was utilized (see Figure 
4.11). Google Colab Pro, a cloud service based on Jupyter notebooks, provides GPUs and TPUs 
for accelerated computing. Key features of Google Colab Pro, including access to GPUs for 
faster training of machine learning models, easy sharing and collaboration on notebooks, and 
integration with other Google services like Drive and Sheets, were leveraged. Google Colab 
Pro’s GPU resources were accessed through a paid subscription, allowing for efficient training 
and execution of the deep learning model, with the GPU hardware providing a significant 
speedup. The flexible Google Colab environment facilitated effective collaboration within the 
research team, while Google’s cloud infrastructure was utilized. The Google Colab Pro 
subscription offered benefits such as longer runtimes, faster hardware, and higher memory 
allocations to support the training of the computationally intensive model. 

 
Figure 4.11. Google Colaboratory logo 

The new model can successfully detect image defects with high precision and accuracy. To 
indicate the accuracy of the present model, a confusion matrix is presented in Figure 4.12, which 
reveals substantial true positive rates for “Cracks” (0.88) and “Spalling” (0.92). These high 
values signify the model’s proficiency in correctly identifying the respective classes. Though 
minimal, the off-diagonal elements of the matrix draw attention to the comparatively fewer 
instances where the model confuses one class for another. 
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Figure 4.12. Confusion matrix of the developed model 

Complementing the confusion matrix, the correlogram of label distributions shown in Figure 
4.13 offers additional insights into the model’s performance. The distribution of labels across the 
dimensions, such as the x and y coordinates and the width and height of the detected regions, 
showcases a concentrated cluster, indicating that the model consistently detects defects within a 
specific range of features. This correlogram elucidates the relationship between different label 
attributes and provides an understanding of the geometric characteristics and the locations of 
detected defects. 
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Figure 4.13. Labels correlogram 

Together, these tools underscore the model’s efficacy. The F1 confidence curves in Figure 4.14 
support the confusion matrix in Figure 4.12, demonstrating the model’s performance across 
different classes and indicating a uniform precision in defect detection.  
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Figure 4.14. F1 confidence curves for the improved Yolov7 model 

The F1 confidence curves presented here clearly indicate the model’s capacity for distinguishing 
between defect classes with high fidelity. The curves for “Spalling” and “Cracks” remain tightly 
bound with little deviation between these classes, which suggests that the model discriminates 
between them with near-equal accuracy. Meanwhile, the “All Classes” curve, which aggregates 
the performance across all categories, maintains a trajectory consistent with that of the individual 
class curves, indicating a uniform performance across the board. As the confidence threshold 
increases, the F1 score remains consistently high before the inevitable decline as the threshold 
approaches 1, which is typical due to the reduction in recall. This trend highlights the model’s 
capability to balance precision (the accuracy of positive predictions) and recall (the ability to 
capture all relevant instances) over a wide range of operational points. 

4.5 Results and Discussion 

The results successfully obtained from the present model for detecting and quantifying 
deterioration in concrete structures are presented and analyzed in this section. The performance 
of the model in detecting structural defects such as cracks and spalling is evaluated across 
various conditions. The effects of fine-tuning procedures and advanced quantification algorithms 
on the model’s capabilities are assessed. The model’s accuracy in damage detection is examined, 
with a focus on its effectiveness in real-world scenarios (such as variations in illuminance effect, 
distance, and angle of capture). Improvements achieved through fine-tuning are discussed, and 
enhanced performance in different contexts is highlighted. The model’s ability to quantify 
detected defects is also evaluated, providing insights into its potential for precise damage 
assessment. 
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4.5.1 Damage Detection 

When high-resolution images are uploaded to the present model, structural deficiencies, 
particularly cracks and spalling, within concrete surfaces are detected with remarkable accuracy. 
Utilizing the new image processing layers, the model successfully identifies even the smallest 
cracks, such as those as narrow as 0.022 in., as demonstrated in Figures 4.15 and 4.16. The 
precision and sensitivity of this detection are evident, as the model can highlight cracks that are 
barely visible. For instance, the images in Figures 4.15 and 4.16 show a concrete surface where, 
from a distance of 4 ft, the naked eye can barely detect any defect, yet the model accurately 
marks the fine cracks.  

 
Figure 4.15. Image of concrete cracks before the image is uploaded to the model 



 80 

 
Figure 4.16. Result of concrete crack detection after the image is uploaded to the model 

This result demonstrates the model’s potential for use in real-time, non-intrusive inspections in 
field conditions to help ensure the safety and longevity of concrete infrastructure. This capability 
is instrumental in structural health monitoring, where undetected microcracks can escalate into 
significant issues. Moreover, Figures 4.15 and 4.16 demonstrate that the model is able to detect 
defects in smooth concrete surfaces, which is one of the most popular finishes for concrete 
surfaces, and that the model can calibrate camera properties, such as the distance to the defect, 
by incorporating those properties into the model’s layers.  

Figure 4.17 demonstrates the model’s advanced detection capabilities from a distance of 15 ft, 
which exhibits its ability to detect cracks accurately even when the image is taken far from the 
defects. Moreover, the angle of capture of the image is not directly perpendicular to the crack 
(not 90 degrees), which highlights the capabilities of the model in processing different distances 
and angles of capture. The concrete surface in this example is normal concrete, which has a 
different color and surface texture than the concrete in Figures 4.15 and 4.16. There is also a 
slightly inclined driveway, which adds to the complexity of detection.  
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Figure 4.17. Result of concrete crack detection before and after an image is uploaded to the 

model 
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Despite these challenges, the model successfully identifies the crack while distinguishing it from 
other concrete segmentation lines, such as the expansion joints often found between concrete 
slabs. This precise differentiation illustrates the model’s advanced capability to distinguish 
between the naturally occurring features of concrete surfaces and actual structural defects. The 
accuracy achieved under these conditions further emphasizes the model’s adaptability to diverse 
concrete surfaces, which can ensure effective monitoring of large-scale structures where perfect 
angles and close proximity are not always feasible. 

Figure 4.18 demonstrates the model’s advanced detection capabilities for concrete spalling, 
accurately identifying areas of damage with precision. The spalling is detected even when the 
concrete surface has exposed reinforcing steel bars, which adds to the complexity of the 
detection process and in some cases leads to a different prediction. The image highlights the 
model’s ability to handle real-world degradation scenarios, as spalling often leads to significant 
structural sensitivity, especially in this case where the steel bars are exposed to corrosion. 
Despite the surface irregularities and the varying textures of the spalled regions, the model 
successfully distinguishes between undamaged concrete and areas where spalling has occurred. 
Additionally, the model maintains high accuracy in segmenting the spalled areas from the 
surrounding concrete, even in situations where multiple spalling regions are present, as shown in 
Figure 4.18. This capability underscores the model’s potential for real-time structural health 
monitoring, where detecting spalling early is critical for preventing further deterioration of 
concrete surfaces.  

 

 
Figure 4.18. Result of concrete spalling detection before and after an image is uploaded to 

the model (testing for the detection of multiple damage types in one image) 
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Figure 4.19 showcases the model’s ability to detect spalling across varying distances and 
complex backgrounds. In the top set of images, the top-left and bottom-left images were captured 
from a closer distance of approximately 7 ft, allowing for precise detection of the spalling around 
exposed reinforcement bars. The image on the right was captured from a greater distance of 
approximately 40 ft and presents a vertical column with extensive spalling. The different 
backgrounds, including smoother surfaces and more intricate textures with exposed rebar, 
demonstrate the model’s adaptability in detecting damage across various conditions. With all 
these factors and obstacles to detecting damage, the proposed model nevertheless successfully 
highlights all of the slight curves and edges of the concrete spalling in the figures. The model 
effectively distinguishes spalling from background features like surface cracks or variations in 
concrete texture, further emphasizing its capability to handle complex structural inspections. 
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Figure 4.19. Result of concrete spalling detection before and after an image is uploaded to 

the model (testing for the detection of multiple damage types in different backgrounds) 

In Figure 4.20, the developed model successfully detects the pattern of cracks in an image from 
the case study bridge, which exhibits its ability to identify even the most minor defects that are 
not visible to the naked eye. As highlighted in the zoomed-in section, the model accurately 
detects a small crack located in the bottom right corner of the concrete wall. This crack, while 
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barely perceptible without advanced tools, is clearly outlined by the model, demonstrating the 
model’s high sensitivity to minute structural deficiencies. As can be noticed in Figure 4.20, the 
bridge structure is subjected to environmental factors such as moisture (which causes concrete 
discoloration) and load stress, which often leads to the development of microcracks that can 
evolve into more significant issues if left unaddressed. The model’s capacity to detect these 
early-stage cracks is crucial for proactive maintenance and preventing more severe damage.  

 
Figure 4.20. Result of concrete crack detection before and after an image is uploaded to the 

model (image from case study bridge) 

4.5.2 Fine-Tuning and Transfer Learning 

The process of enhancing the proposed model’s predictive capabilities through fine-tuning 
yielded extraordinary improvements in damage detection. As can be observed from the 
progression illustrated in Figure 4.21, there was a significant evolution from initial inaccurate 
detection to highly precise identification of structural defects. This improvement was achieved 
through a comprehensive and iterative fine-tuning process, which involved carefully adjusting 
various parameters and training the model with diverse images encompassing a wide range of 
crack widths and spalling conditions. The use of a diverse and augmented dataset was a key 
aspect of the fine-tuning process. Different augmentation techniques were applied to increase the 
variety of the training dataset, including rotation within a range of -15 to +15 degrees, random 
horizontal and vertical flips, brightness and contrast adjustments, and the addition of Gaussian 
noise. The training dataset was enriched with images featuring concrete spalling of various sizes 
and depths as well as cracks of several widths and lengths (ranging from hairline cracks to 
extensive cracks exceeding 1 in.), as described in Section 4.4. This diversity allowed the model 
to learn to detect and classify cracks across a broad spectrum of sizes. Similarly, multiple types 
and severities of spalling were included in the dataset, from minor surface deterioration to 
extensive concrete loss, enabling the model to accurately identify different stages of spalling. 
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(a) (b) 

  
(c) (d) 
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(e) 

Figure 4.21. Result of fine-tuning in order to improve detection quality 

The impact of the fine-tuning efforts is clearly visible in the series of images provided in Figure 
4.21. In Figure 4.21a, a concrete surface with subtle, fine cracks that are challenging to detect 
with the naked eye is shown. This image represents the type of difficult case that the initial 
model struggled with, often missing these minor defects entirely. As the image series progresses 
from Figure 4.21a to 4.21e, the increasing accuracy of the model’s detection capabilities can be 
observed. 

In Figure 4.21b, the model’s improved ability to detect and highlight a significant crack running 
vertically through the concrete surface is displayed. The red overlay precisely traces the path of 
the crack, demonstrating the model’s enhanced sensitivity to linear defects. This accuracy is 
attributed to the fine-tuning process, particularly the inclusion of diverse crack widths in the 
training data. 

In Figure 4.21c, a more complex crack pattern, with the defect branching out in multiple 
directions, is shown. The model’s ability to accurately trace this intricate pattern showcases the 
success of the transfer learning approach. By leveraging weights from the initial model and fine-
tuning them on more diverse and challenging datasets, significant improvements in the model’s 
performance on complex defect patterns were achieved. 
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Figure 4.21d further illustrates the model’s improved capabilities, with the accurate detection of 
a three-way crack junction. This level of precision in identifying complex crack geometries was 
a notable achievement of the fine-tuning process. The transfer learning approach allowed the 
model to build upon its basic understanding of linear cracks and extend this knowledge to more 
intricate patterns. 

Finally, in Figure 4.21e, the model’s ability to detect both fine cracks and more substantial 
defects within the same image is demonstrated. The long, horizontal crack is clearly identified, 
as well as the finer, vertical crack intersecting it. This comprehensive detection capability serves 
as a testament to the effectiveness of the transfer learning and fine-tuning approach and its role in 
enabling the model to simultaneously identify defects of varying scales and orientations. 

4.5.3 Damage Quantification  

A significant breakthrough in quantifying concrete structural defects was achieved after the 
tracking algorithm was implemented with the developed model. Remarkable accuracy in 
measuring crack widths and lengths, as well as the dimensions of concrete spalling in high-
quality images, was demonstrated by the new model. This advancement is a substantial leap 
forward in automated structural health monitoring. 

The results obtained from the model for the crack shown in Figure 4.22 are impressive. A total 
crack length of 115.124 in. and an average width of 0.913 in. were estimated. Upon comparing 
the model’s estimations to the actual measurements of 112.2 in. for length and 0.97 in. for width, 
a length error of about 2.6% and a width error of approximately 6.2% were observed. These 
minor discrepancies highlight the model’s high precision in real-world applications. 
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Figure 4.22. Result of crack quantification 

The slightly higher error in the width dimension can be attributed to the measurement 
methodology. Width measurements were taken from different spots along the crack length, and 
the locations of these spots within the quantification model likely differed from those used for 
the manual measurements. The bounding box and overlay visible in the image provide further 
evidence of the model’s ability to accurately detect and quantify cracks. The green bounding box 
encapsulates the entire crack length, while the red overlay traces its path with precision, 
demonstrating the model’s sophisticated edge detection capabilities. 

As mentioned above, the evaluation of the crack condition as “poor,” based on the guidelines set 
forth in the Manual for Bridge Element Inspection, indicates that both the detected severity and 
the dimensions of the crack have surpassed critical thresholds. These thresholds are established 
to assess the structural integrity of the element, and, when exceeded, they signify a level of 
deterioration that typically requires immediate remedial action. The dimensions and severity of 
the detected crack suggest that it poses a potential risk to the overall stability of the structure. 
This classification of “poor” is not only a reflection of the crack’s size and extent but also an 
indication that the defect could compromise the capacity of the bridge components. Therefore, 
timely intervention, such as structural assessment and potential repairs, would be necessary to 
ensure that the issue does not escalate into a more significant structural failure. 

In Figure 4.23, another case of crack detection and measurement is presented that demonstrates 
the model’s ability to accurately identify and quantify fine cracks in concrete structures. A crack 
with an actual width of 0.022 in. (0.56 mm) and a length of 56.3 in. (1.43 m) was analyzed using 
the developed model. The results from this analysis showcase the model’s exceptional accuracy 
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in detecting and measuring hairline cracks, which are notoriously difficult to assess using 
conventional methods due to their minute size and the challenges they pose to visual inspection. 

 
Figure 4.23. Result of crack quantification with different assessment 

Upon comparing the model’s measurements with the actual dimensions, a width error of 
approximately 9% and a length error of about 3.5% were observed. Although these errors are 
slightly higher than those found in other instances, they remain within an acceptable range for 
practical applications, especially considering the extremely fine scale of the crack width being 
measured. The difficulty in achieving precise measurements for such small cracks is significantly 
high, making the model’s performance in this scenario particularly noteworthy. 

The condition of the crack was classified as “fair” by the model, following the standards set by 
the Manual for Bridge Element Inspection. This automatic assessment was generated based on 
the quantified dimensions, along with other factors considered by the model’s algorithms. The 
capability of the model to not only detect and measure cracks but also provide a condition 
assessment aligned with standardized inspection guidelines highlights its value. This 
functionality can greatly enhance the inspection process by streamlining evaluations, ensuring 
consistency across different inspectors, and maintaining uniform condition assessments across 
various locations. The automation of such assessments represents a significant advancement in 
improving the efficiency and accuracy of structural inspections. 

The detection and quantification model accurately identifies and measures spalling in concrete 
structures, as shown in Figure 4.24. The model calculates the spalling dimensions as 31.943 x 
14.700 in. (81.14 x 37.34 cm), resulting in an estimated area of 3.261 ft2 (0.303 m2). Comparing 
this to the actual measured area of approximately 3.05 ft² (0.283 m²), we find a relatively small 
error of about 6.5%. The discrepancy in measurements likely stems from two main factors: (1) 
the unhighlighted areas around the edges of the spalling, which the model may have partially 
included in its calculations, and (2) potential differences in the exact location of measurements 
between the model and the manual assessment. Despite this minor deviation, the model’s ability 
to quickly and automatically quantify spalling damage demonstrates its potential as a valuable 
infrastructure inspection and maintenance tool. 
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Figure 4.24. Result of concrete spalling quantification 

Another key to obtaining an accurate assessment is knowing the camera’s properties. 
Significantly, knowing the camera properties is crucial for exact measurements. The camera’s 
focal length, sensor size, and distance from the subject are essential for converting pixel 
measurements to real-world dimensions. Without this information, the model’s ability to provide 
precise physical measurements would be compromised, potentially leading to more significant 
errors in area and dimension calculations.  
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CHAPTER 5: SUMMARY AND CONCLUSIONS  

This research project leveraged and identified opportunities to adopt UAVs to enhance the 
damage detection, inspection, and 3D modeling of bridge infrastructure. The core objective of 
the project was to develop an integrated system that combines UAV technology with advanced 
AI and ML algorithms specifically for bridge inspection and damage detection. By utilizing 
drones for high-precision data collection and AI/ML for the analysis of structural integrity, the 
system improved both the accuracy and efficiency of defect identification and to address the 
limitations of traditional inspection methods, which can be time-consuming and prone to human 
error. Furthermore, the system was designed to support predictive maintenance by continuously 
analyzing structural health data over time. This predictive approach allowed for the early 
identification of potential issues, enabling proactive decision-making and reducing the likelihood 
of critical failures. In addition to improving safety and reliability, the integration of UAVs, AI, 
and ML offered the potential for more cost-effective and timely maintenance of bridge 
infrastructure. 

The implementation of UAVs has significantly advanced bridge inspection methodologies. 
These aerial imaging platforms facilitate the capture of high-resolution, multi-angle imagery of 
bridge structures. The proximity at which these UAVs operate allows for the detection of 
microfractures and surface degradation that may elude visual inspection from ground level. The 
resultant high-fidelity images enable inspectors to identify structural anomalies at an early stage, 
which is critical for proactive maintenance planning and ensuring the continued structural 
integrity and safety of the bridge. Furthermore, the accumulation of these high-quality images 
over time provides a temporal dataset that allows for the quantitative analysis of defect 
propagation, which is essential for predictive maintenance scheduling and long-term structural 
health monitoring. In the field of photogrammetry software, the conducted comparative analysis 
demonstrated the superior performance of Bentley iTwin Capture in generating 3D models from 
UAV-acquired imagery. Despite the fact that all of the software solutions in this research were 
assessed utilizing an identical image dataset, Bentley iTwin Capture’s algorithms produced 
notably more realistic and detailed 3D reconstructions compared to the other software solutions 
evaluated. The enhanced fidelity of these models was of particular importance, as it enabled 
virtual inspection from multiple perspectives, analogous to an in situ examination. This level of 
detail facilitated the identification of latent issues that may not be apparent in two-dimensional 
imagery, such as defects in complex structural interfaces or areas prone to water accumulation 
and subsequent deterioration. 

The flight path and control methodology of the UAVs used to acquire images were identified as 
critical factors influencing the quality of the resultant 3D model. Empirical evidence suggested 
that utilizing preprogrammed, automated flight paths yields superior results compared to manual 
control. A case study demonstrated that manual operation led to insufficient image capture of the 
bridge’s substructure, resulting in an incomplete or poorly rendered 3D model. In contrast, 
automated flight protocols ensured comprehensive coverage of the structure, with images 
captured from all necessary angles systematically. This methodical approach was found to be 
fundamental to generating a complete and accurate 3D model, serving as a reliable basis for 
structural assessment and analysis. 
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Bentley iTwin Capture’s integration of AI capabilities extended its functionality beyond mere 3D 
reconstruction. The software incorporated advanced measurement tools that leverage AI 
algorithms to automatically quantify various structural parameters within the 3D model. The 
accuracy of these AI-derived measurements was validated through comparison with in situ 
measurements, which demonstrated a high degree of concordance. This functionality enhanced 
the reliability of the software-generated data, potentially reducing the need for on-site 
measurements, which can be both hazardous and time-consuming. Moreover, the software’s 
learning capabilities can be trained on custom datasets to recognize specific types of structural 
defects, such as cracks or corrosion. By training the AI on a comprehensive set of defect images, 
the system autonomously identified and flagged potential issues in new 3D models. This 
automated defect detection significantly enhanced the efficiency of the inspection process, 
allowing inspectors to prioritize areas of concern and allocate resources more effectively. 

The implementation of the developed CNN model demonstrated significant advancements in the 
detection of structural defects, particularly cracks and spalling, in bridge infrastructure. This 
model achieved comprehensive defect detection with high accuracy across a diverse range of 
conditions, including varying image resolutions, lighting scenarios, and perspectives. Such 
robustness enhanced the reliability of damage detection in real-world applications, addressing a 
critical challenge in automated structural health monitoring. The model’s architecture, optimized 
through iterative testing and validation, incorporated multiple convolutional layers and pooling 
operations to enable effective feature extraction from complex structural images. Its ability to 
maintain performance consistency across different environmental conditions was attributed to the 
diverse training dataset and the implementation of data augmentation techniques. This 
adaptability was crucial for practical deployment, as it allowed the model to function effectively 
in the varied and often challenging conditions encountered during bridge inspections. The 
improved detection capabilities of the proposed model contributed significantly to the field of 
structural engineering, offering a more efficient and accurate means of identifying potential 
structural weaknesses in bridge components. 

Fine-tuning and transfer learning methodologies played a pivotal role in significantly enhancing 
the model’s performance, enabling it to detect a broader range of defects with greater precision. 
The fine-tuning process involved careful adjustments to hyperparameters and the selective 
retraining of specific network layers, which optimized the model for the particular domain of 
bridge defect detection. Transfer learning, leveraging pretrained weights from large-scale image 
recognition tasks, allowed the model to benefit from generalized feature extraction capabilities 
while adapting to the nuances of structural defect identification. By utilizing diverse datasets and 
augmentation techniques, the model gained the ability to classify different crack widths and 
spalling severities with high accuracy. This enhanced classification capability was found to be 
crucial for predictive maintenance and informed decision-making in infrastructure management. 
The model’s improved versatility allowed it to discern between hairline cracks and more severe 
fractures and differentiate various stages of spalling, providing a nuanced assessment of 
structural integrity. This solid level of defect categorization enabled infrastructure managers to 
prioritize maintenance activities more effectively, potentially leading to more efficient resource 
allocation and improved long-term structural health management strategies. 
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The developed damage detection model accurately quantified both crack dimensions and spalling 
area. By incorporating advanced algorithms, including the region-growing technique, the model 
successfully and accurately translated pixel-based measurements into real-world dimensions. 
This advancement represented a significant step forward in automating structural health 
monitoring and improving the accuracy of defect assessments in bridge infrastructure. The 
region-growing algorithm enabled the model to delineate defect boundaries precisely, allowing 
for accurate measurement of crack lengths and widths and spalling areas. The conversion from 
pixels to physical measurements was achieved through careful calibration that involves the 
consideration of imaging parameters such as distance to the structure and camera specifications. 
This level of precision in quantification was crucial for assessing the severity of structural 
damage and informing repair strategies. Moreover, the model’s ability to provide consistent and 
accurate measurements across various environmental conditions enhanced its reliability as a tool 
for long-term monitoring of structural health. By offering quantitative data on defect progression 
over time, the model supported more informed decision-making in bridge maintenance and 
rehabilitation planning. 
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