Development of CMFs for Traffic Signal Installation at High-Speed Intersections

Final Report September 2025

About the Center for Transportation Research and Education

The mission of the Center for Transportation Research and Education (CTRE) at Iowa State University is to conduct basic and applied transportation research to help our partners improve safety, facilitate traffic operations, and enhance the management of infrastructure assets.

About the Institute for Transportation

The mission of the Institute for Transportation (InTrans) at Iowa State University is to save lives and improve economic vitality through discovery, research innovation, outreach, and the implementation of bold ideas.

Iowa State University Nondiscrimination Statement

Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national origin, pregnancy, sexual orientation, genetic information, sex, marital status, disability, or status as a U.S. Veteran. Inquiries regarding nondiscrimination policies may be directed to Office of Equal Opportunity, 2680 Beardshear Hall, 515 Morrill Road, Ames, Iowa 50011, telephone: 515-294-7612, email: eooffice@iastate.edu.

Disclaimer Notice

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Iowa DOT Statements

Iowa DOT ensures non-discrimination in all programs and activities in accordance with Title VI of the Civil Rights Act of 1964. Any person who believes that they are being denied participation in a project, being denied benefits of a program, or otherwise being discriminated against because of race, color, national origin, gender, age, or disability, low income and limited English proficiency, or if needs more information or special assistance for persons with disabilities or limited English proficiency, please contact Iowa DOT Civil Rights at 515-239-7970 or by email at civil.rights@iowadot.us.

The preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its "Second Revised Agreement for Management of Research Conducted by Iowa State University for the Iowa Department of Transportation" and its amendments.

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Iowa Department of Transportation.

Front Cover Image Credits

Polk County, Iowa GIS – EagleView Technologies

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
InTrans Project 24-880		
4. Title and Subtitle	·	5. Report Date
Development of CMFs for Traffic S	signal Installation at High-Speed	September 2025
Intersections		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Yazan Abukhalil (orcid.org/0000-0003-0484-7877), Zach Hans (orcid.org/0000-0003-0649-9124), and Nour Al-Jbour		InTrans Project 24-880
9. Performing Organization Name	e and Address	10. Work Unit No. (TRAIS)
Institute for Transportation		
Iowa State University 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664		11. Contract or Grant No.
12. Sponsoring Organization Name and Address		13. Type of Report and Period Covered
Iowa Department of Transportation		Final Report
800 Lincoln Way Ames, IA 50010		14. Sponsoring Agency Code

15. Supplementary Notes

Visit https://ctre.iastate.edu for color pdfs of this and other research reports.

16. Abstract

Between 2016 and 2020, nearly 2,900 fatal, serious injury, and minor injury crashes occurred in Iowa at paved, all-way stop control and partial stop control intersections with at least one approach having a speed limit exceeding 45 mph, i.e., high-speed intersections. This increases to nearly 7,800 fatal, serious injury, and minor injury crashes when considering all paved, unsignalized intersections in the state. At the national level, 18% of all fatal crashes occurred at unsignalized intersections in 2018.

Several factors can contribute to crashes at unsignalized intersections, including drivers failing to recognize the intersection, not complying with the traffic control, or selecting inappropriate gaps. Additionally, reaction times are reduced as speeds increase, and the severity of crashes is greater. In fact, the safe system speed for "car/car (side impact, intersections)" crashes is only approximately 30 mph. Traffic signal installation is a countermeasure that may be considered at high-speed intersections; however, national research presents mixed findings on its effectiveness.

Since Iowa has a robust intersection database, high-quality crash data, and prior experience developing intersection safety performance functions (SPFs), this research focused on creating Iowa-specific crash modification factors (CMFs) for signalizing high-speed intersections. A five-step methodology was implemented.

This research revealed that signal installations at non-ramp high-speed locations increase all but broadside crashes on most facility types. The findings showed that signal installation at high-speed intersections reduced broadside crashes by less than 64%, while rear-end crashes increased by more than 70%, depending on intersection geometric characteristics. Additional CMF values were derived for subsets of high-speed intersection types, including divided, undivided, three-leg, and four-leg intersections. This report showcases a comparative analysis of the impact of signalization on different classes of high-speed intersections. The study's results were validated through hypothesis tests of proportions analysis and comparisons with existing literature.

17. Key Words	18. Distribution Statement		
countermeasures—crash modification factors—high-speed intersections—safety performance functions—signalization		No restrictions.	
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price
Unclassified.	Unclassified.	69	NA

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DEVELOPMENT OF CMFs FOR TRAFFIC SIGNAL INSTALLATION AT HIGH-SPEED INTERSECTIONS

Final Report September 2025

Principal Investigator

Zachary Hans, Research Scientist Center for Transportation Research and Education, Iowa State University

Co-Principal Investigator(s)

Yazan Abukhalil, Research Engineer Center for Transportation Research and Education, Iowa State University

Research Assistant

Nour Al-Jbour

Authors

Yazan Abukhalil, Zach Hans, and Nour Al-Jbour

Sponsored by Iowa Department of Transportation

Preparation of this report was financed in part through funds provided by the Iowa Department of Transportation through its Research Management Agreement with the Institute for Transportation (InTrans Project 24-880)

A report from

Center for Transportation Research and Education Iowa State University

2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 Phone: 515-294-8103 / Fax: 515-294-0467

https://ctre.iastate.edu

TABLE OF CONTENTS

ACKNOWLEDGMENTS	vii
EXECUTIVE SUMMARY	ix
INTRODUCTION	1
LITERATURE REVIEW	2
CMF Development MethodsCMFs for Signalizing Intersections	
DATA SOURCES	9
METHODOLOGY	10
Treatment Site Identification and Data Collection	
Selection of CMF Development Method CMF Development CMF Validation	15
FINDINGS AND DISCUSSION	
Sample SPF Discussion of CMF Values Validation	18
CONCLUSIONS AND RECOMMENDATIONS	25
Conclusions	
REFERENCES	27
APPENDIX A. SPFS DETAILED MODELS AND CURE PLOTS	28

LIST OF FIGURES

Figure 1. CMFs by (a) crash type and (b) crash severity	
Figure 2. Distribution of CMF values	
Figure 3. High-level project methodology	
Figure 4. Breakdown of high-speed signalized intersections in the intersection database	
Figure 5. Geometric characteristics of non-ramp-related high-speed signalized intersections	s11
Figure 6. Map of non-ramp-related high-speed signalized intersections	12
Figure 7. Geometric characteristics of non-ramp-related high-speed unsignalized	
intersections	14
Figure 8. Map of non-ramp-related high-speed unsignalized intersections	14
Figure 9. Count of signals by installation year	15
Figure 10. Sample SPF model parameters and CURE plot	18
LIST OF TABLES	
Table 1. Summary of analysis methods	4
Table 2. Summary of sample sizes	6
Table 3. Summary of considered factors	7
Table 4. Data sources and usage	9
Table 5. Homogeneous grouping logic for intersections	16
Table 6. Crash severities and types for CMF development	
Table 7. Summary of CMF values	19
Table 8. CMF ranges in the signal installation literature	21
Table 9. Alignment check between CMFs and hypothesis tests of proportions	22
Table 10. Signal phasing summary	24
Table 11. Average crash rate comparison by signal phasing	24
Table 12. Major cause comparison of angle crashes by signal phasing	

ACKNOWLEDGMENTS

The research team would like to thank the Iowa Department of Transportation (DOT) for sponsoring this research.

EXECUTIVE SUMMARY

Between 2016 and 2020, nearly 2,900 crashes involving fatalities or injuries occurred at high-speed, unsignalized intersections in Iowa with at least one approach exceeding 45 mph. This number rises to almost 7,800 crashes when considering all paved, unsignalized intersections statewide. Traffic signal installation is a countermeasure that may be considered at high-speed intersections; however, national research presents mixed findings on its effectiveness. This study aimed to develop Iowa-specific crash modification factors (CMFs) for signalizing high-speed intersections, leveraging the state's robust data systems and past work on intersection safety performance functions (SPFs).

A comprehensive literature review revealed that empirical Bayes (EB) and cross-sectional approaches are the most widely used methods to develop CMFs, each with strengths and limitations. Given limitations in before-and-after crash data for most Iowa intersections, this study used a cross-sectional analysis, comparing crash patterns at signalized and unsignalized intersections while controlling for traffic volumes and geometry.

Data were compiled from multiple sources, including the Iowa Department of Transportation's (DOT's) intersection inventory, crash database, and roadway asset management system (RAMS), along with supplemental tools like Google Street View and Pathways PathWeb. Seventy-three signalized non-ramp high-speed intersections were identified as treatment sites, and 813 non-ramp unsignalized intersections were retained as reference sites after rigorous screening for geometric and surface conditions.

A total of 252 SPFs were developed to model crashes by severity, manner of collision, vehicle action, and direction of travel. From these, 94 CMFs were found to be statistically significant at the 5% significance level. The results showed a consistent increase in total crashes following signal installation, driven largely by increases in rear-end, same-direction sideswipe, and stopped-vehicle crashes. However, broadside and perpendicular-direction crashes tended to decrease, consistent with expectations from signal installation. The CMFs for broadside crashes ranged from 0.383 to 0.639, indicating significant reductions. In contrast, rear-end crash CMFs exceeded 3.0.

Validation was conducted using comparisons with the CMFs in the Federal Highway Administration (FHWA) CMF Clearinghouse, hypothesis tests of crash type proportions, and local agency outreach regarding signal phasing. Results confirmed that permissive and protected-permissive left-turn phasing were associated with increased left-turn and angle crashes, suggesting that protected-only phasing may improve outcomes.

The study concluded that signal installation at high-speed intersections does not consistently reduce overall crashes or serious injuries and, in many cases, increases lower-severity crashes. Therefore, alternative intersection designs—such as roundabouts, reduced-conflict intersections, and median closures—should be considered prior to signal installation. Any signal installed should be accompanied by an access management strategy and include protected-only left-turn phasing where feasible.

INTRODUCTION

Between 2016 and 2020, nearly 2,900 fatal, serious injury, and minor injury crashes occurred in Iowa at paved, all-way stop control and partial stop control intersections with at least one approach having a speed limit exceeding 45 mph, i.e., high-speed intersections. This increases to nearly 7,800 fatal, serious injury, and minor injury crashes when considering all paved, unsignalized intersections in the state. At the national level, 18% of all fatal crashes occurred at unsignalized intersections in 2018. Several factors can contribute to crashes at unsignalized intersections, including drivers failing to recognize the intersection, not complying with traffic control, or selecting inappropriate gaps. Additionally, reaction times are reduced as speeds increase, and the severity of crashes is greater.

Traffic signal installation is a countermeasure that may be considered at high-speed intersections. The Federal Highway Administration (FHWA) Crash Modification Factors Clearinghouse (https://www.cmfclearinghouse.org) has several crash modification factors (CMFs) pertaining to traffic signal installation. However, the CMF values can vary widely, originate from studies of various quality levels and analysis periods, and employ data from single geographic regions or states.

A CMF is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site. A CMF value below 1 indicates a reduction in crash count following countermeasure implementation. For example, if an intersection has 10 total crashes per year and a countermeasure with a CMF of 0.8 for all crashes is applied, it is expected that 8 crashes will occur annually following the implementation of the countermeasure.

The state of Iowa is well positioned to develop Iowa-specific CMFs for signalizing high-speed intersections, given the state's comprehensive intersection database, high-quality crash data, and past/ongoing efforts to develop intersection safety performance functions (SPFs). Therefore, the objective of this project was to develop Iowa-specific CMFs with respect to the installation of traffic signals at high-speed intersections. This report summarizes the work conducted as part of this project and consists of six main chapters:

- Introduction, discussing the value of this project
- Literature Review, summarizing the state of the practice
- Data Sources, providing a comprehensive overview of the data sources utilized in this project
- Methodology, detailing the step-by-step analysis conducted to develop the CMFs
- Findings and Discussion, highlighting the results of the analysis and the effectiveness of signalization at high-speed intersections in reducing crashes
- Conclusions, summarizing the key takeaways and recommendations for future implementation or research

LITERATURE REVIEW

A comprehensive review of the methodologies commonly used to develop CMFs was conducted, focusing on studies aimed at developing CMFs for signalizing intersections. This section summarizes the findings of the literature review.

CMF Development Methods

CMF development methods are generally classified into two categories: observational beforeand-after studies and cross-sectional studies.

Observational Before-and-After Studies

Observational before-and-after studies are applied when the exact installation date of the treatment is known and when there is enough before and after crash data. Observational before-and-after studies are prevalent in the literature. The literature has five types of these studies.

Naïve Before-and-After Studies

This approach calculates the CMF of a treatment based only on sites where the treatment has been applied. It is considered the simplest approach to calculate a CMF. It calculates the CMF as the ratio of the after-treatment crashes to the before-treatment crashes. This method does not consider how the specific treatment sites compare to other similar sites or overall safety trends. It usually overestimates the treatment's impact due to the regression-to-the mean problem, which happens when a specific location experiences an unusually high count of crashes in a given period followed by a low count of crashes in the following period due to natural fluctuations, meaning that the crash count tends to converge to a long-term mean.

Yoked Comparison and Comparison Group Approaches

These approaches account for the changes in external factors over time that the naïve approach does not. This is accomplished by pairing each treatment site with a comparison site (or group of sites) that did not receive the treatment and that has a similar crash history trend and comparable traffic, geometric, and geographic characteristics. Assuming that all factors have changed in the same manner at both the treatment and comparison sites, the ratio of the comparison sites' crashes in the after period to those in the before period is used to calculate the crashes in the after period at the treated sites if the countermeasure had not been implemented. The CMF is calculated as the ratio of the observed crashes at the treatment sites to the calculated crashes if no countermeasure had been implemented. The primary downside of this approach is that it does not account for the regression-to-the-mean problem.

Empirical Bayes Approach

In the empirical Bayes (EB) approach, the after-treatment crash frequency if the countermeasure had not been implemented is calculated more precisely using a large set of untreated sites that have similar characteristics to the treated sites. SPFs and their overdispersion factors, which are a key component in the EB approach, are used to estimate the expected count of crashes at the treatment sites if no treatment had been applied. This approach addresses the common regression-to-the-mean issue in before-and-after studies. It incorporates traffic volume changes, makes better use of limited data, and accounts for external factors that might influence crash frequency.

Full Bayes Approach

The full Bayes (FB) approach is similar to the EB approach in that both utilize a reference population. However, the FB approach substitutes the EB approach's point estimate with an expected crash frequency and its variance, generating a distribution of likely values. The FB approach allows for a multivariate analysis. It also treats each time period as an individual data point and integrates the estimation of the SPF and treatment effects within a single step, whereas these are two separate steps in the EB method. However, these advantages come at the expense of high complexity levels.

Cross-Sectional Studies

Cross-sectional studies are often employed when it is challenging to isolate the impact of a single treatment due to the presence of multiple treatments or when the exact installation date of a treatment is unknown. Two primary cross-sectional CMF development approaches are documented in the literature: the naïve and regression-based methods. Both approaches begin by identifying a set of similar sites based on predefined features such as number of legs, control type, whether the roadway is divided/undivided, number of lanes, area type, and traffic level.

In the naïve method, sites are divided into two groups based on the presence of the treatment. The CMF is calculated as the ratio of the average crash frequency at treatment sites to that at notreatment sites.

In the regression-based method, regression analysis is utilized to fit an SPF that includes treatment presence as an independent variable. The regression model derives the CMF as the exponent of the treatment variable's coefficient.

CMFs for Signalizing Intersections

The FHWA CMF Clearinghouse was reviewed to identify research studies that developed CMFs for signalizing intersections. This research resulted in the following list:

- 1. NCHRP Report 491: Crash Experience Warrant for Traffic Signals (1)
- 2. Accident Modification Factors for Traffic Engineering and ITS Improvements (2)
- 3. Validation and Application of Highway Safety Manual (Part D) in Florida (3)
- 4. Comparison of safety evaluation approaches for intersection signalization in Florida (4)
- 5. Safety Evaluation of Signal Installation with and without Left Turn Lanes on Two Lane Roads in Rural and Suburban Areas (5)
- 6. A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations (6)

These studies were reviewed with a focus on the analysis methods, factors considered for grouping intersections, types of crashes, number of treatment and reference sites, and resulting CMF values. The subsections below summarize the review findings.

Analysis Methods

Table 1 shows that in all research studies except for study number 6, the EB approach was used to develop the CMFs. Study number 6, on the other hand, utilized the FB approach. Study number 3, however, investigated all methods except FB and yoked comparison across a wide spectrum of crash types. Consequently, CMF values resulting from various methods were selected based on statistical significance.

Table 1. Summary of analysis methods

Research	Naïve Before-	Comparison			Cross-
Study	and-After	Group	EB	FB	Sectional
1			Y		
2			Y		
3	Y	Y	Y		Y
4			Y		
5			Y		
6				Y	

Crash Types

Figure 1(a) shows that the majority (nearly 60%) of the developed CMFs considered target crashes. Among these, rear-end collisions were the most frequently addressed, with 10 CMFs, followed by angle crashes and left-turn crashes with 6 CMFs. Other less common crash types, such as right turn same roadway, right turn different roadway, sideswipe, and head-on, each had fewer than 3 developed CMFs, totaling 6 CMFs. Notably, the relatively low frequency of target crashes led to the development of CMFs that do not consider crash severity. Figure 1(b) illustrates that 72% of the developed CMFs are applicable to all crashes.

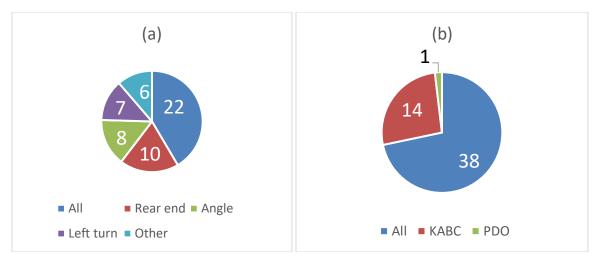


Figure 1. CMFs by (a) crash type and (b) crash severity

Sample Sizes

Table 2 demonstrates the extensive variation in sample sizes among the reviewed research studies. The sample sizes range from 2 to 100 treatment sites and from 19 to 1,405 reference sites. Notably, the sample size is significantly influenced by the factors used for selecting the treatment and reference sites, which are outlined in the subsequent section.

Table 2. Summary of sample sizes

Research	
Study	Sample Size
•	Intersections converted from stop to signal:
	• 3-leg: 22
	• 4-leg: 100
	A reference group of signalized intersections:
1	• 3-leg: 19
	• 4-leg: 96
	A reference group of stop-controlled intersections:
	• 3-leg: 99
	• 4-leg: 199
	Different sample sizes were obtained from both California and Minnesota. Below is the
	breakdown of the sample sizes:
	California:
	• 3-leg/2 lanes on major road: treatment sites: 4, and reference sites: 1,405
2	• 4-leg/2 lanes on major road: treatment sites: 14, and reference sites: 742
	• 4-leg/4 lanes on major road: treatment sites: 10, and reference sites: 183
	Minnesota
	• 3-leg: treatment sites: 2, and reference sites: 522
	• 4-leg: treatment sites: 15, and reference sites: 763
	Treatment sites: 32 intersections
	• Rural areas: 8, and urban areas: 24
3	• 3-leg:15, and 4-leg: 9
	Comparison sites: 202 sites with similar roadway characteristics and annual average
	daily traffic (AADT) values
4	This publication could not be accessed. The only information available is that the
	sample size is greater than 50 intersections.
5	Treatment sites (3-leg: 36, and 4-leg: 81)
	Reference sites (3-leg: 129, and 4-leg: 276)
6	Treatment sites: 19 intersections
	Reference sites: 107 intersections

Considered Factors

The factors utilized for grouping the treatment sites and selecting corresponding reference sites are summarized in Table 3. The number of legs is the most frequently used factor. Among the factors, AADT is noteworthy because it was used to conduct a disaggregate analysis to assess how the statistical significance of a CMF changes when grouping intersections based on AADT.

Table 3. Summary of considered factors

Research	
Study	Factors
	AADT Speed
1	Geometry: • Number of legs
	Sight distance adequacy
2	AADT Geometry: Number of legs Number of lanes
3	Area type Number of legs
4	This publication could not be accessed. The only factor listed in the abstract is AADT.
5	Geometry: Number of legs Number of lanes No left-turn lanes on the major road Stop-controlled on the minor road Location: No public street intersection within 100 ft No rail grade crossing within 500 ft
6	Geometric design Traffic control characteristics

Resulting CMF Values

Figure 2 indicates that the majority of the developed CMFs are below 1 (86%), suggesting a reduction in crash frequencies following signal installation. Notably, all CMFs greater than one pertain to rear-end collisions occurring in both urban and rural areas, with the original intersection control type being all-way and partial stop control. Signals are well known for the dilemma zone, in which drivers must decide whether to stop or proceed before the signal turns red. The various decisions made by drivers result in a higher probability of rear-end crashes at signalized intersections (7).



Figure 2. Distribution of CMF values

DATA SOURCES

For this study, a variety of data sources were utilized to collect information about the treatment sites (i.e., signalized intersections) and the reference sites (i.e., unsignalized intersections). The data sources used and their usage are shown in Table 4.

Table 4. Data sources and usage

Data Source	Usage
Intersection Inventory	Iowa DOT intersection database, developed in 2017 with targeted updates
Database	made in 2023. Used to identify the treatment and reference sites.
Crash Database	Iowa DOT reportable crash database. Used to obtain the count of crashes at
Clasii Database	each treatment and reference site.
Iowa DOT Roadway	Three RAMS layers—Iowa linear reference system (LRS) Network, Traffic
Asset Management	Information, and Surface Type—were used to identify where ramps are
System (RAMS)	located, obtain AADT values at each leg of the treatment sites, and exclude
System (RAMS)	reference sites with at least one unpaved leg, respectively.
	360-degree roadway images collected by Google. Used to assess road
Google Street View	characteristics at treatment sites, including speed limits, control types, signal
	installation dates, lane configurations, and the presence of medians.
	Panoramic, rear-facing, and roadway surface images, collected for the Iowa
Pathways PathWeb	DOT by Pathways. Used as an alternative to Google Street View when more
	recent images were available.
Iowa Geographic Map	Statewide, multiyear aerial image dataset. Used to collect the geometric
Server	characteristics of signalized intersections when PathWeb and Google Street
Server	View were unable to provide the necessary information.

METHODOLOGY

A five-step methodology, presented in Figure 3, was followed to develop CMFs for signalizing high-speed intersections. The following subsections provide details about each step in the methodology.

Figure 3. High-level project methodology

Treatment Site Identification and Data Collection

In this step, the intersection database was used to identify all treatment sites, with a focus on signalized intersections where at least one leg has a speed limit greater than 45 mph. Additional characteristics were manually collected using resources such as Google Street View, PathWeb, and the Iowa Geographic Map Server to establish a homogeneous set of treatment sites. Key intersection characteristics included the presence of medians, the number of legs with separate right- and left-turn lanes, the presence of ramps as intersection legs, the traffic control type prior to signal installation, and the dates of the first and last images showing the presence/absence of signalization.

The dates of the first and last images showing the presence/absence of signalization were critical in assessing the feasibility of conducting an EB before-and-after analysis for CMF development, depending on the availability of pre- and post-installation crash data. These image dates were also used to verify the accuracy of the control type reported in the intersection database. Additionally, the speed limit was validated for all legs of each intersection. As a result of this manual data collection, the high-speed signalized intersection database was refined, as shown in Figure 4. Figure 5 and Figure 6 highlight the major characteristics of the non-ramp-related high-speed signalized intersections and show their spatial distribution.

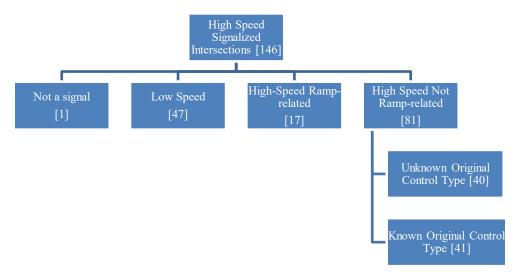


Figure 4. Breakdown of high-speed signalized intersections in the intersection database

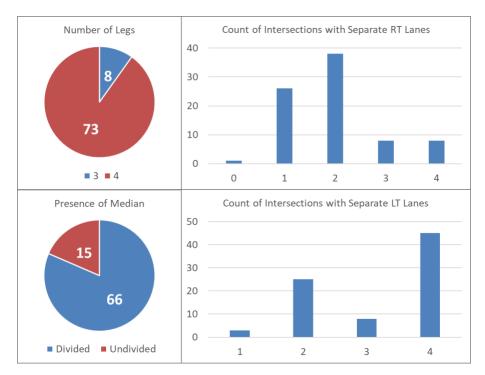


Figure 5. Geometric characteristics of non-ramp-related high-speed signalized intersections

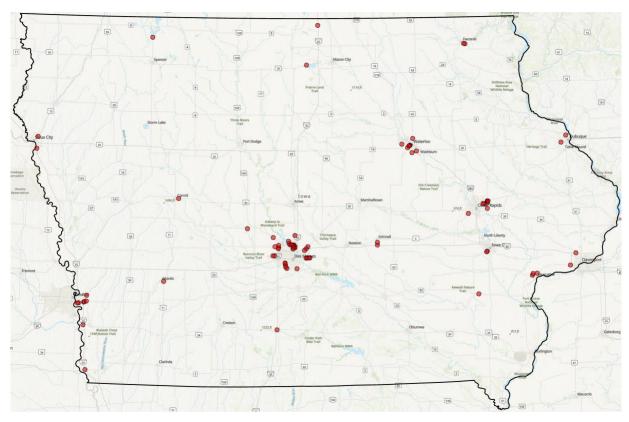


Figure 6. Map of non-ramp-related high-speed signalized intersections

In addition to manual data collection, the RAMS Traffic Information layer was used to obtain both major and minor AADT values for each intersection, with a focus on the middle year of the five-year period following signal installation. Furthermore, the five-year crash count was calculated for each intersection, covering the five years after signal installation at the intersections. To expand the list of treatment sites with sufficient after-installation crash data, a second set of CMFs was also developed using three years of crash data.

Reference Site Identification and Data Collection

Regardless of the CMF development methodology, reference sites must be identified to develop SPFs for an EB before-and-after analysis, establish a comparison group for estimating notreatment crashes at treatment sites, or represent the population of intersections needed to develop cross-sectional models.

The first step in reference site selection was to identify all unsignalized intersections in the intersection database, which resulted in 28,190 potential reference sites. Because the intersection database had not been comprehensively updated since its initial development, the traffic control at each intersection was validated using the following three-step process, which reduced the number of potential reference sites to 28,049 intersections:

- 1. Spatially join crashes to reference sites. The same methodology used to identify intersection crashes during SPF development, which had been approved by the Iowa Department of Transportation (DOT), was utilized.
- 2. Create a summary of traffic control at the vehicle level by reference site.
- 3. Manually review reference sites where at least one crash was reported as having a traffic signal control type, which could suggest that the traffic control changed during the five-year period.

Since ramp-related intersections are inherently different from traditional intersections—in that ramps feature one-way entry and departure—the potential reference sites were separated into ramp-related and non-ramp-related intersections using the following methodology:

- 1. Spatially join ramps to reference sites using a 250 ft buffer.
- 2. Identify potential ramp-related reference sites.
- 3. Manually review the reference sites identified in the previous step.

As expected, the majority of the unsignalized intersections were found to be non-ramp related (27,506). Ramp-related intersections were excluded from the analysis because of the complexity of traffic movements and the challenges in accurately assigning crashes to intersections, especially at the reference sites. To ensure that both the treatment and reference sites have similar traffic conditions, the retained non-ramp-related reference sites were limited to intersections with major and minor AADT values within 10% of those of the non-ramp-related treatment sites. This step reduced the number of non-ramp-related reference sites to 1,019.

The last intersection refinement step involved excluding intersections with at least one unpaved leg. The following methodology was used:

- 1. Identify unpaved roads using the surface type from the RAMS Surface Type layer.
- 2. Spatially join unpaved roads to reference sites using a 250 ft buffer.
- 3. Exclude intersections with at least one unpaved segment within 250 ft.

This reduced the reference sites to 813.

After identifying the reference sites, the number of legs, the presence of a median, and major and minor AADT values were obtained from the intersection database. The team also obtained the number of legs with separate right-turn (RT) and left-turn (LT) lanes from the approach layer of the intersection database. The team was unable to identify 37 reference sites from the approach layer of the intersection database. Therefore, corresponding data were collected manually using Google Street View for these sites. Crashes between 2019 and 2023 were joined to the reference sites and summarized by type and severity. Figure 7 highlights the major characteristics of the non-ramp-related unsignalized intersections. Figure 8 shows the locations of the reference sites.

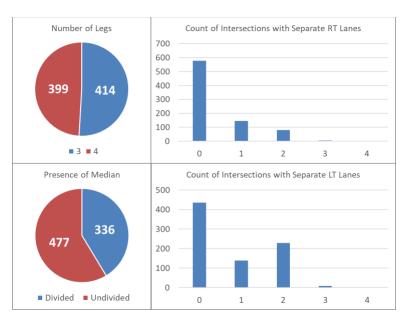


Figure 7. Geometric characteristics of non-ramp-related high-speed unsignalized intersections

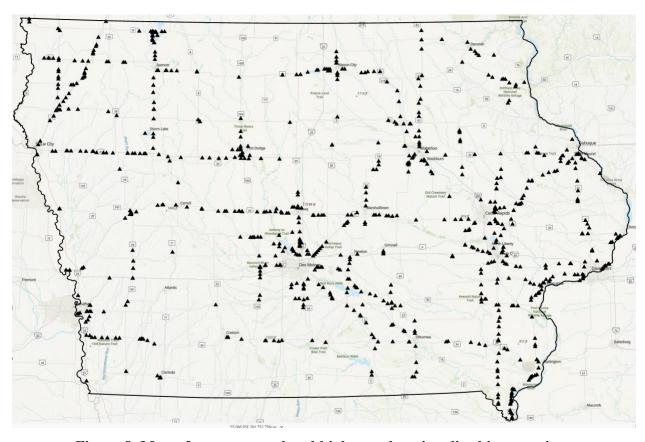


Figure 8. Map of non-ramp-related high-speed unsignalized intersections

Selection of CMF Development Method

After collecting the characteristics of the treatment and reference sites, the most appropriate method for developing CMFs was selected. Two key factors influenced the selection: the availability of signal installation dates and the availability of crash data from before and after the installations. As shown in Figure 9, most signals were installed before 2014, which limits access to before-installation crash data due to the Iowa DOT's 10-year crash data retention policies. Additionally, only a few signals (eight) were installed after 2019, limiting the availability of sufficient after-installation crash data. Therefore, cross-sectional analysis was selected as the method for developing CMFs in this project.

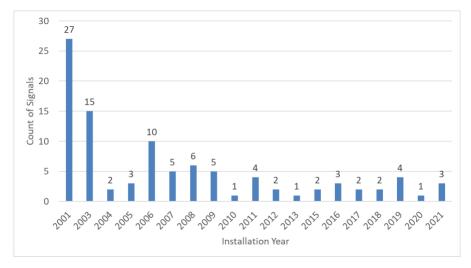


Figure 9. Count of signals by installation year

CMF Development

To develop CMFs using cross-sectional analysis, SPFs must be fitted with a binary independent variable indicating the presence or absence of a signal at the intersection. The format of the SPFs is shown below:

Predicted Crashes = $\exp(\alpha + \beta_1 Ln(MINORAADT) + \beta_2 Ln(MAJORAADT) + \beta_3 SIGNAL)$

The CMF value can be obtained as the exponent of β_3 . The statistical significance of the CMF can be assessed by conducting hypothesis testing on the value of β_3 , specifically, by testing the presence of strong evidence to prove that the value of β_3 is not zero, which thus indicates that the value of the CMF is different than one. The hypothesis testing formulation is shown in the following:

- Ho: $\beta_3 = 0 \rightarrow CMF = 1$
- Ha: $\beta_3 \neq 0 \rightarrow CMF \neq 1$

• If the p-value of this hypothesis testing is less than a predefined significance level (e.g., $\alpha = 0.05$), there is enough evidence to prove that the CMF value is not 1.

A total of 252 SPFs were developed covering the following: two model types (Poisson and negative binomial), the six homogeneous intersection groups shown in Table 5, in addition to the group of all intersections, and the 18 crash severities and types shown in Table 6.

Table 5. Homogeneous grouping logic for intersections

Factor	Groups
Median presence	Divided – Undivided
Number of legs	3-Leg – 4-Leg
Number of legs with separate LT lanes	Min. one leg with a separate LT lane
Number of legs with separate RT lanes	Min. one leg with a separate RT lane

Table 6. Crash severities and types for CMF development

Crash Severities	Crash Types (Manner of Collision)	Crash Types (Vehicle Action)	Crash Types (Vehicle Direction of Travel)
Total (KABCO)	Angle	Crash involving a right-	Crash involving vehicles
Fatal through possible injury (KABC) Fatal, serious, and minor injury (KAB) Possible injury and property damage only (CO) Property damage-only (PDO)	Broadside Rear end Sideswipe same direction Sideswipe opposite direction Head-on	turning vehicle Crash involving a left- turning vehicle Crash involving a vehicle changing lanes Crash involving a stopped vehicle	moving in opposite directions Crash involving vehicles moving in perpendicular directions Crash involving vehicles moving in the same direction

After identifying the CMFs that were statistically significant at the 5% significance level, additional refinement was performed based on sample size and the goodness of fit of the SPFs. The sample size criteria included crash counts greater than 300 and a reference-to-treatment site ratio exceeding 4:1, which were identified from the literature review. The goodness of fit was evaluated using the cumulative residuals (CURE) deviation percentage (CDP), with a threshold of less than 5%. Some of these assumptions were also relaxed, and the impact on the resulting CMFs was analyzed, as detailed in the Findings and Discussion chapter.

CMF Validation

To ensure the robustness and reliability of the developed CMFs, three primary validation methods were employed: literature validation, hypothesis tests of proportions, and local agency

outreach. Each method provided a unique perspective on the credibility and applicability of the obtained CMFs.

1. Literature Validation

A comparative analysis was conducted between the obtained CMFs and those available in the literature. This validation step ensured that the estimated CMFs fell within a reasonable range based on previous studies.

2. Hypothesis Tests of Proportions

Two hypothesis tests of proportions were conducted to evaluate differences in crash proportions between signalized and unsignalized intersections and assess whether the proportions of different crash types follow a similar trend to the developed CMFs. The null hypothesis for both tests stated that the proportion of a specific crash type at signalized intersections is equal to that at unsignalized intersections. Two alternative hypotheses were tested:

- The proportion of a specific crash type at signalized intersections is lower than that at unsignalized intersections.
- The proportion of a specific crash type at signalized intersections is higher than that at unsignalized intersections.

3. Local Agency Outreach

To enhance the contextual understanding of the obtained CMFs, 34 local agencies (counties and cities) were contacted to gather information on signal phasing. This outreach was particularly valuable in explaining unexpected CMF values, especially for angle crashes, by considering the impact of traffic signal operations.

FINDINGS AND DISCUSSION

This research study resulted in 252 SPFs, from which 252 CMFs were derived for various high-speed intersection characteristics and crash types. Ninety-four CMFs were statistically significant at the 5% significance level. The following subsections provide a detailed discussion of these SPFs and CMFs and the findings of the validation efforts.

Sample SPF

A sample SPF model summary and CURE plot are shown in Figure 10. This model represents broadside crashes at undivided intersections. The CURE plot shows that cumulative residuals fluctuate around zero without exhibiting specific trends, indicating a good model fit. The model parameters (β_1 , β_2 , and β_3) demonstrate reasonable relationships between predicted crashes, traffic volume, and traffic control. Specifically, β_1 and β_2 indicate that broadside crash frequency increases with higher major and minor AADT values. Conversely, β_3 shows that intersections with traffic signals experience lower broadside crash frequencies compared to those with other traffic control types. The resulting CMF for this model is 0.436, with a p-value of 0.029, indicating high statistical significance. The model's CDP is 0.2%, which is well below the recommended 5% threshold. Appendix A provides a complete table of the 94 SPFs that yielded statistically significant CMFs at the 5% significance level.

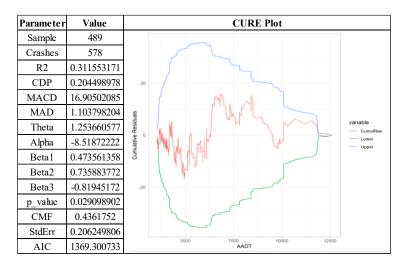


Figure 10. Sample SPF model parameters and CURE plot

Discussion of CMF Values

The crash types for which CMF values were calculated can be grouped into four categories: severity, manner of collision, vehicle action, and colliding vehicles' directions of travel. Table 7 presents all of the statistically significant CMF values. The bolded CMFs are those meeting three literature-based criteria listed in the methodology section. Furthermore, the underlined CMFs are those obtained using three years of crash data instead of five years. The following subsections

provide detailed observations for each crash type group and the results of consistency and reasonableness checks for the CMF values.

Table 7. Summary of CMF values

		Intersection Category						
Crash Type		All	3-Leg	4-Leg	Divided	Undivided	Separate RT	Separate LT
	KABCO	1.795	1.504	1.730	2.023	0.798	1.453	1.722
	KABC	1.440		1.398	1.614	0.590	1.202	1.323
Severity	KAB					0.282		
	CO	2.004	1.664	1.930	2.278		1.586	1.961
	PDO	2.033	1.652	1.958	2.328		1.629	2.024
	Rear end	3.690	3.408	3.520	4.405	1.761	3.311	3.865
Manner of	Sideswipe same- direction	2.969	2.224	3.141	2.936	2.812	2.815	2.814
Collision	Angle	2.436		2.631	3.229		1.820	2.390
	Broadside	0.561	0.383	0.565	0.639	0.436	0.452	0.563
	Head on	2.276		2.084	4.221			
	Crash involving a stopped vehicle	3.764	2.835	3.733	4.752	1.788	3.142	4.112
Vehicle Action	Crash involving a left-turning vehicle	1.730		1.773	1.987	0.624	1.311	1.620
Action	Crash involving a right-turning vehicle	1.680		1.632	1.925		1.536	1.515
	Crash involving vehicles moving in opposite directions	2.545		2.296	3.089		1.627	2.289
Direction of Travel	Crash involving vehicles moving in perpendicular directions	0.577	0.361	0.590	0.660	0.449	0.476	0.573
	Crash involving vehicles moving in the same direction	3.595	2.959	3.515	4.142	1.763	3.129	3.651
	nalized Intersections	73	6	67	61	12	72	73
Count	of Unsignalized tersections	813	414	399	336	477	246	389

Green cells represent CMFs less than one (improvement in safety condition).

Red cells represent CMFs greater than one (worsening safety condition).

Blank cells correspond to statistically insignificant CMFs.

Bolded CMFs are those meeting three literature-based criteria (crash frequency > 300, reference-to-treatment sites ratio > 4:1, CDP < 5%).

Underlined CMFs are obtained using three years of crash data instead of five years.

Severity Analysis

The CMFs for KABCO (total) crashes range from approximately 1.5 to 2.5, generally increasing for more complex intersection types like divided intersections (CMF = 2.02). These values that exceed 2 may suggest potential overestimation or unique local conditions. For KAB (fatal, serious, and minor injury) crashes, only one CMF was statistically significant. The value of that CMF is 0.282. However, the sample size for signalized intersections is only 12, which is low. Furthermore, the 71.8% reduction in injury crashes may be an overestimate. The CMFs for CO (possible injury and property damage) crashes and PDO (property damage-only) crashes show a similar pattern, with higher values for more complex intersection types. These values are consistent with an increase in low-severity crashes.

Manner of Collision Analysis

Rear-end crashes have the highest CMFs, exceeding 3.5 across all intersection types except undivided intersections and intersections with a maximum of one leg with a separate right turn. The large CMFs for rear-end crashes are consistent with the literature, where studies have found that signalization tends to increase rear-end collisions due to abrupt stopping behavior. On the other hand, broadside crashes have CMFs less than 1, indicating a reduction in crashes involving vehicles entering the intersection from approaches at a perpendicular angle, which aligns with the expected results from a reduction in crossing conflicts.

Same-direction sideswipe crashes have higher CMFs, generally between 2 and 3. This crash increase may be associated with the stop-and-go traffic pattern at signalized intersections, which leads to lane-changing behavior to avoid stopping. It may also be associated with lanes merging or dropping near signalized intersections. Furthermore, angle crashes have CMFs greater than 1, indicating increased crashes at signalized intersections. Although a reduction in crossing conflicts is expected, this increase in angle crashes may be associated with permissive turn phasing, which will be discussed later.

Vehicle Action Analysis

The CMFs for crashes involving stopped vehicles are consistently high (e.g., 2.835 for three-leg intersections), which aligns with the increase in sudden stops and rear-end collisions due to signalization. However, these values are somewhat larger than expected, especially for undivided intersections and intersections with separate left-turn lanes. Regarding turn-related crashes, left-turn crashes have moderate CMFs, mostly ranging from 1.5 to 2, suggesting partial mitigation of conflicts but an increase in crashes due to the potential presence of permissive turning phases. Right-turn crashes show similar CMFs to left-turn crashes.

Direction of Travel Analysis

The CMFs for crashes involving perpendicular directions of travel are consistently below 1, reflecting the effectiveness of signalization. This is consistent with expectations and with the

CMF values for broadside crashes, as signalization eliminates many crossing conflicts. For crashes involving vehicles moving in opposite directions, the CMFs range from 1.6 to 3. The higher CMFs for opposite-direction crashes (e.g., 3.1 for divided intersections) may indicate unique issues like insufficient signal timing or poor visibility, which merit further investigation. The CMFs for same-direction crashes are the highest in this category, with values exceeding 4 at divided intersections. This aligns with the increase in rear-end and sideswipe same-direction collisions noted above.

Validation

The following subsections highlight the findings of the three validation methodologies conducted in this research project.

Literature-Based Validation

The calculated CMFs were validated by comparing them with values from the literature, specifically from studies summarized in the FHWA CMF Clearinghouse. The maximum and minimum CMF values for each crash type from these studies are presented in Table 8. A calculated CMF was considered to be validated if it fell within the range of CMFs reported in the literature. The CMFs for both rear-end and KABC (fatal through possible injury) crashes for undivided high-speed intersections fall within the range of values from the literature, confirming their validity.

Table 8. CMF ranges in the signal installation literature

Crash Type	Minimum CMF	Maximum CMF
Angle	0.230	0.700
Left turn	0.400	0.500
Rear End	1.427	1.950
KABCO	0.560	0.840
KABC	0.465	0.860
PDO	0.898	0.898

Supplemental CMFs were developed using three years of crash data. This analysis resulted in two additional CMFs that did not exist in the five-year analysis. These two CMFs are for undivided intersections and for KABCO (total) crashes and crashes involving a vehicle turning left. The CMF for KABCO crashes is 0.798, which falls within the range of minimum and maximum values reported in the literature, validating its reliability. Similarly, the CMF for crashes involving left-turning vehicles is 0.624. While this value does not fall strictly within the range of values reported in the literature, it can be considered reasonable and effectively validated, providing additional insights into crash mitigation at these types of intersections.

Hypothesis Tests of Proportions

Table 9 functions as a validation tool for comparing and checking the alignment of the obtained CMF values with the results of hypothesis tests of proportions. The colors shown in the table mean the following:

- **Green**: Both the proportions test and the CMF indicate a reduction in the analyzed crash type after signal installation.
- **Red**: Both the proportions test and the CMF indicate an increase in the analyzed crash type after signal installation.
- **Black**: The proportions test and the CMF do not align, showing a mismatch.
- **Blue**: Insufficient evidence exists to reject the null hypothesis in the proportions test.
- White: No statistically significant CMF was identified.

Table 9. Alignment check between CMFs and hypothesis tests of proportions

		Intersection Category						
Crash Type		All	3-Leg	4-Leg	Divided	Undivided	Separate RT	Separate LT
	KABC							
Severity	KAB							
Severity	СО							
	0							
	Rear end							
Manner of	Sideswipe same- direction							
Collision	Angle							
Comston	Broadside							
	Head On							
	Crash involving a stopped vehicle							
Vehicle Action	Crash involving a left- turning vehicle							
	Crash involving a right- turning vehicle							
Direction of Travel	Crash involving vehicles moving in opposite directions							
	Crash involving vehicles moving in perpendicular directions							
	Crash involving vehicles moving in the same direction							

The analysis revealed several key findings regarding the relationship between the hypothesis test of proportions results and the CMF values for various crash types. Both methods consistently indicate a reduction in broadside crashes and crashes involving vehicles moving in perpendicular directions following signal installation. Conversely, both approaches show an increase in six crash types: CO crashes, PDO crashes, rear-end crashes, angle crashes, crashes involving stopped vehicles, and crashes involving vehicles heading in the same direction.

For several crash types, the hypothesis test of proportions results show no significant difference in proportions between signalized and unsignalized intersections for the majority of the high-speed intersection subsets. These crash types include sideswipe same-direction crashes, head-on crashes, crashes involving right-turning vehicles, and crashes involving vehicles moving in opposite directions. As a result, the CMFs associated with these crash types were excluded from the final recommendations due to a lack of statistical significance.

Additionally, a discrepancy was observed for two crash types: KABC crashes and crashes involving left-turning vehicles. While the CMFs suggest an increase in these crash types after signal installation, the hypothesis test of proportions results indicate the opposite.

Local Agency Outreach

Useful phasing information was obtained from 18 out of the 34 local agencies contacted, covering 53 signalized intersections. The collected data included details on left-turn and right-turn phasing for each intersection leg, with classifications of protected, permitted, or protected-permitted.

Since the primary focus of this validation effort was on angle and left-turn crashes, the reported phasing information was aggregated into broader categories, as presented in Table 10. The analysis revealed that 64% of the signalized intersections include a permitted phase or a combination of permitted and protected phasing. Permitted phasing requires drivers to make gap acceptance decisions, which can introduce variability in driver behavior and lead to an increased likelihood of conflict, particularly for left-turning vehicles interacting with opposing through traffic. This characteristic of permitted phasing helps explain the high CMF values obtained for angle and left-turn crashes. This conclusion was supported by comparing the average angle and left-turn crash rates at all-protected signals and signals with a permitted phase. Table 11 shows that signals that have only protected left-turn phasing have lower average angles and left-turn crash rates.

Table 10. Signal phasing summary

Left-Turn Phasing Type	Count of Intersections
All Protected	19
All Protected-Permitted	7
50/50 Protected/Permitted	12
50/50 Protected-Permitted/Permitted	5
50/50 Protected-Permitted/Protected	3
75/25 Protected-Permitted/Protected	1
25/50/25 Protected-Permitted/Protected/Permitted	3
25/75 Protected-Permitted/Protected	2
50/25/25 Protected-Permitted/Protected/Permitted	1

Table 11. Average crash rate comparison by signal phasing

Signal Phasing Type	Average Angle Crash Rate	Average LT Crash Rate
Signals with a Permitted Phase	0.408	0.983
All-Protected Signals	0.293	0.828

This conclusion was also supported by comparing the major cause distribution of angle crashes at all-protected signals and signals with a permitted phase, as shown in Table 12. The top major cause of angle crashes at intersections with a permitted phase is failure to yield the right of way (FTYROW) while making a left turn, which may be associated with permitted phasing. On the other hand, angle crashes at all-protected signals are mainly associated with running a traffic signal.

Table 12. Major cause comparison of angle crashes by signal phasing

	Signals with a	All-Protected
Major Cause	Permitted Phase	Signals
FTYROW: Making a Left Turn	62%	31%
Ran Traffic Signal	14%	40%
Made Improper Turn	9%	7%
Unknown	3%	8%
Other (Explain in Narrative): Other	4%	4%
FTYROW: Making A Right Turn On Red Signal	1%	4%

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This research project used cross-sectional analysis to develop a comprehensive list of Iowa-specific CMFs for signalizing high-speed intersections. Multiple validation steps were performed to ensure the robustness of these CMFs, including examining various aspects of the data and comparing the results with values reported in the literature. The finalized list of CMFs is presented in Table 13, representing the culmination of rigorous analysis and verification efforts. The key takeaways from this research are as follows:

- 1. Traffic signal installation is a countermeasure that may be considered at high-speed intersections. This research reveals that such installations increase all but broadside crashes on most facility types.
 - a. Overall intersection crashes are predicted to increase.
 - b. The intersection will not experience a significant reduction in overall serious injury crashes.
 - c. The intersection may experience a reduction in broadside/right-angle ("T-bone") collisions, although the intersection will still experience some broadside crashes from red light running and permissive left-turn collisions.
 - d. The intersection will also experience an increase in mainline rear-end collisions. Due to higher speeds, these rear-end crashes will be more severe.
- 2. KABCO crash reductions were only observed on undivided intersections. This may be because these intersections generally occur in more suburban/urban transition zones, where driver expectancy of encountering traffic signals is increased.

Recommendations and Considerations

When selecting the right countermeasure at high-speed intersections, the research recommends taking into consideration the following points:

- 1. Alternatives to high-speed traffic signals should be evaluated before high-speed traffic signals are proposed. Alternative intersections should be considered, such as the following:
 - a. Roundabout
 - b. Reduced-conflict intersection
 - c. Right-in/right-out
 - d. Median closure
- 2. The trade-offs of high-speed traffic signals should be communicated to the traveling public and local officials during intersection evaluation.
- 3. Any potential traffic signal at a high-speed location should be part of a corridor access management agreement.
 - a. This agreement should consider other existing intersections that may already be signalized or other intersections that may also be signalized in the near term.
 - b. The impact of the first signal can set a precedent for future intersections.

- c. This agreement should note "major intersections" instead of "pre-determined signal locations."
- 4. Protected-only left-turn phasing is strongly recommended over permissive or protected-permissive phasing. This could mean all-day protected left-turn movements or left-turn phasing that varies based on time-of-day peak traffic and/or left-turn queue detection.

Table 13. Final CMF recommendations

		Intersection Category						
Crash Type		All	3-Leg	4-Leg	Divided	Undivided	Separate RT	Separate LT
	KABCO	1.795	1.504	1.730	2.023	<u>0.798</u>	1.453	1.722
	KABC	1.440		1.398	1.614	0.590	1.202	1.323
Severity	KAB					0.282		
	CO	2.004	1.664	1.93	2.278		1.586	1.961
	О	2.033	1.652	1.958	2.328		1.629	2.024
	Rear end	3.690	3.408	3.520	4.405	1.761	3.311	3.865
Manner	Sideswipe same- direction	2.969	2.224	3.141	2.936	2.812	2.815	2.814
of Callinian	Angle	2.436		2.631	3.229		1.820	2.390
Collision	Broadside	0.561	0.383	0.565	0.639	0.436	0.452	0.563
	Head on	2.276		2.084	4.221			
	Crash involving a stopped vehicle	3.764	2.835	3.733	4.752	1.788	3.142	4.112
Vehicle Action	Crash involving a left-turning vehicle	1.730		1.773	1.987	0.624	1.311	1.620
	Crash involving a right-turning vehicle	1.680		1.632	1.925		1.536	1.515
	Crash involving vehicles moving in opposite directions	2.545		2.296	3.089		1.627	2.289
Direction of Travel	Crash involving vehicles moving in perpendicular directions	0.577	0.361	0.590	0.660	0.449	0.476	0.573
	Crash involving vehicles moving in the same direction	3.595	2.959	3.515	4.142	1.763	3.129	3.651

Literature validation only

Proportions test validation only

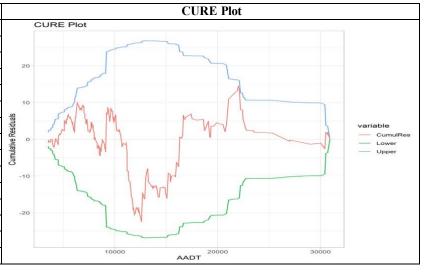
Both validation tests

Not statistically significant – Value not reported

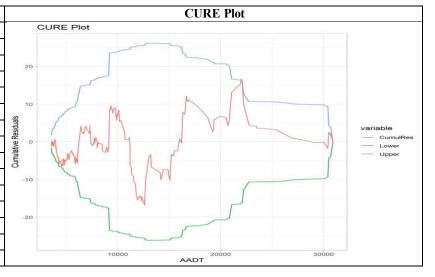
Bolded CMFs are those meeting three literature-based criteria (crash frequency > 300, reference-to-treatment sites ratio > 4:1, CDP < 5%).

REFERENCES

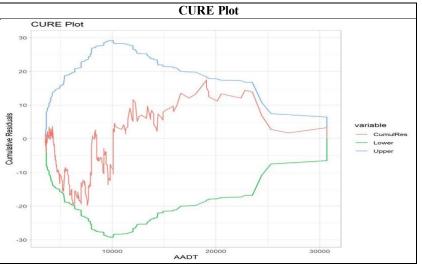
- 1. McGee, H., S. Taori, and B. Persaud. 2003. *NCHRP Report 491: Crash Experience Warrant for Traffic Signals*. National Cooperative Highway Research Program, Washington, DC.
- 2. Harkey, D. L., R. Srinivasan, J. Baek, F. M. Council, K. Eccles, N. Lefler, F. Gross, B. Persaud, C. Lyon, E. Hauer, and J. A. Bonneson. 2008. *NCHRP Report 617: Accident Modification Factors for Traffic Engineering and ITS Improvements*. National Cooperative Highway Research Program, Washington, DC.
- 3. Abdel-Aty, M. A., C. Lee, J. Park, J. H. Wang, M. Abuzwidah, and S. Al-Arifi. 2014. *Validation and Application of Highway Safety Manual (Part D) in Florida*. No. BDK78-977-14. Florida Department of Transportation, Tallahassee, FL.
- 4. Wang, J. H., and M. A. Abdel-Aty. 2014. Comparison of safety evaluation approaches for intersection signalization in Florida. Paper No. 14-0374. 93rd Annual Meeting of the Transportation Research Board, January 12–16, Washington, DC.
- 5. Srinivasan, R., B. Lan, and D. Carter. 2014. *Safety Evaluation of Signal Installation with and without Left Turn Lanes on Two Lane Roads in Rural and Suburban Areas*. No. FHWA/NC/2013-11. Research and Analysis Group, North Carolina Department of Transportation, Raleigh, NC.
- 6. Sacchi, E., T. Sayed, and K. El-Basyouny. 2016. A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations. *Accident Analysis & Prevention*, Vol. 94, pp. 52–58.
- 7. Zhao, J., J. Yu, F. Zhang, and Y. Liu. 2023. Mitigation of signalized intersection collision risks with trajectory based dynamic dilemma zone protection. *Accident Analysis & Prevention*, Vol. 192, p. 107288.

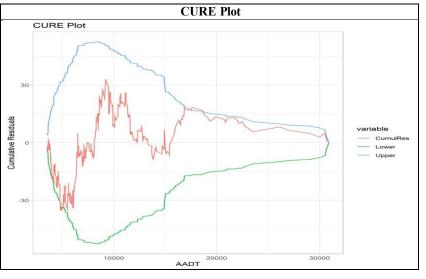

APPENDIX A. SPFS DETAILED MODELS AND CURE PLOTS

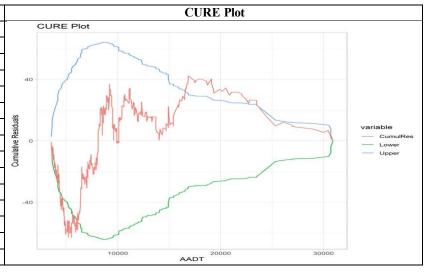
Parameter	Value	CURE Plot
Intersection Type	4 Leg Intersection	CURE Plot
Crash Type	angle	
Sample	466	20
Crashes	301	
R2	0.5592531	
CDP	3.648069	10
MACD	15.51221	variable CumulRes Lower Upper
MAD	0.654735	CumulRes Lower
Alpha	-8.502465	— Upper
Beta1	0.2890754	-10
Beta2	0.7082957	\ W
Beta3	0.9671822	
p value	2.055257e-08	-20
CMF	2.630522	
AIC	814.9659	10000 20000 30000 AADT


Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	angle	30
Sample	886	
Crashes	384	20
R2	0.5650594	1
CDP	0.3386005	10
MACD	18.05508	variable
MAD	0.4851122	variable CumulRes Lower Upper
Alpha	-9.060243	— Upper
Beta1	0.3223255	-10
Beta2	0.7409329	
Beta3	0.890366	-20
p value	8.196501e-09	
CMF	2.436021	-30
AIC	1226.491	10000 20000 30000 AADT

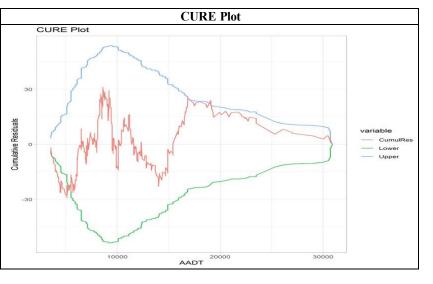
Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	angle	
Sample	397	20
Crashes	269	
R2	0.5639024	
CDP	0.2518892	10
MACD	19.29377	variable
MAD	0.6633547	variable — CumulRes — Lower — Upper
Alpha	-8.399344	— Upper
Beta1	0.2416787	-10
Beta2	0.7292256	
Beta3	1.172187	
p value	1.726051e-10	-20
CMF	3.229046	
AIC	684.4217	10000 20000 30000 AADT


Parameter	Value
Intersection Type	Separate LT
Crash Type	angle
Sample	462
Crashes	304
R2	0.5508112
CDP	0.2164502
MACD	22.49944
MAD	0.6557891
Alpha	-8.916647
Beta1	0.296216
Beta2	0.7559031
Beta3	0.8712069
p value	3.583482e-07
CMF	2.389793
AIC	813.5517

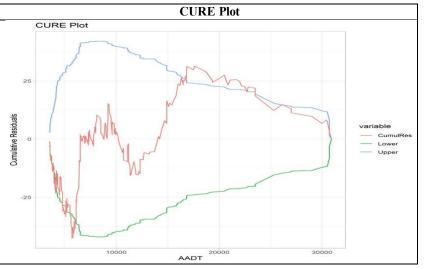

Parameter	Value
Intersection Type	Separate RT
Crash Type	angle
Sample	318
Crashes	273
R2	0.5286874
CDP	1.257862
MACD	16.79626
MAD	0.8084937
Alpha	-9.45768
Beta1	0.3704989
Beta2	0.766091
Beta3	0.59869
p value	0.002256928
CMF	1.819733
AIC	663.9594


Parameter	Value
Intersection Type	3 Leg Intersection
Crash Type	broadside
Sample	420
Crashes	332
R2	0.1268298
CDP	1.904762
MACD	19.75721
MAD	0.879481
Alpha	-12.42044
Beta1	0.9711531
Beta2	0.5759846
Beta3	-0.9590143
p value	0.003539788
CMF	0.3832705
AIC	1029.009

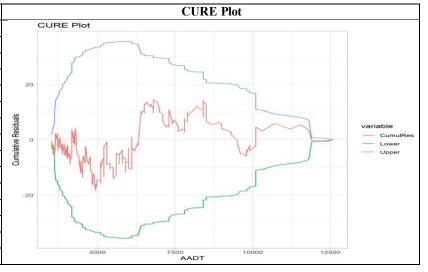
Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	broadside
Sample	466
Crashes	1242
R2	0.4334838
CDP	4.506438
MACD	35.31956
MAD	1.719504
Alpha	-4.757085
Beta1	0.2174903
Beta2	0.5715014
Beta3	-0.5702985
p value	1.740435e-10
CMF	0.5653566
AIC	1998.192



Parameter	Value
Intersection Type	All
Crash Type	broadside
Sample	886
Crashes	1574
R2	0.3746391
CDP	30.69977
MACD	62.91562
MAD	1.445064
Alpha	-7.368868
Beta1	0.4171751
Beta2	0.6507186
Beta3	-0.5783039
p value	8.737009e-12
CMF	0.5608488
AIC	3270.593

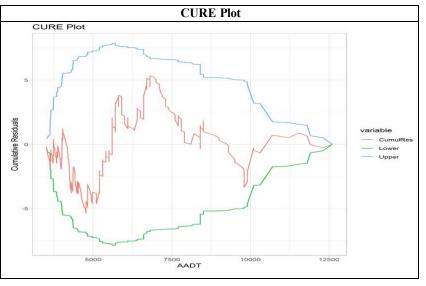


Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	broadside	
Sample	397	
Crashes	996	30
R2	0.3609495	
CDP	6.549118	
MACD	27.60467	variable
MAD	1.81834	variable CumulRes Lower Upper
Alpha	-4.40299	— Upper
Beta1	0.1404552	WY 1 W
Beta2	0.6032084	-30
Beta3	-0.4472614	
p value	1.839907e-06	
CMF	0.6393767	
AIC	1753.372	10000 20000 30000 AADT

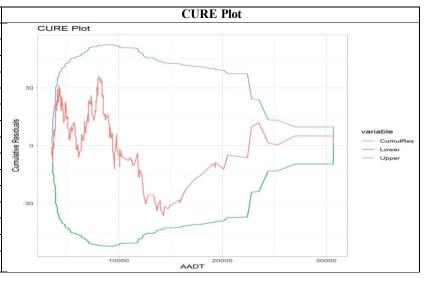

Parameter	Value
Intersection Type	Separate LT
Crash Type	broadside
Sample	462
Crashes	1136
R2	0.3720616
CDP	12.98701
MACD	31.11505
MAD	1.788844
Alpha	-5.457821
Beta1	0.2542099
Beta2	0.6090384
Beta3	-0.574121
p value	2.530219e-10
CMF	0.5631997
AIC	2011.749

Parameter	Value
Intersection Type	Separate RT
Crash Type	broadside
Sample	318
Crashes	841
R2	0.5175879
CDP	27.04403
MACD	42.66188
MAD	1.743359
Alpha	-6.703511
Beta1	0.3678674
Beta2	0.6524686
Beta3	-0.7935324
p value	7.012919e-14
CMF	0.4522445
AIC	1352.329

Parameter	Value
Intersection Type	Undivided
Crash Type	broadside
Sample	489
Crashes	578
R2	0.3129055
CDP	0.204499
MACD	18.3814
MAD	1.104865
Alpha	-8.343099
Beta1	0.4588795
Beta2	0.728508
Beta3	-0.8290974
p value	0.0002498093
CMF	0.4364431
AIC	1491.636



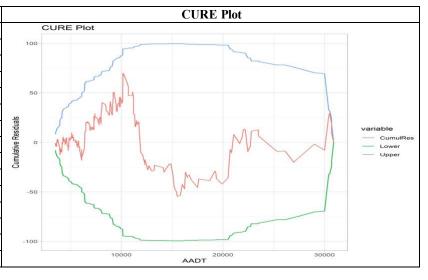
Parameter	Value	CURE Plot	
Intersection Type	4 Leg Intersection	CURE Plot	
Crash Type	Vehicle changing lanes		
Sample	466	10	
Crashes	176	M \	
R2	0.6193117		
CDP	1.502146	duals	variable
MACD	8.03283		— CumulRes
MAD	0.4430716	Oumulative Residuals	— Lower — Upper
Alpha	-11.15059	3	
Beta1	0.8608396		
Beta2	0.3138449	-10	
Beta3	0.5785548		
p value	0.009275035		
CMF	1.783459	10000 20000 30000	
AIC	659.9516	AADT	


Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	Vehicle changing lanes	
Sample	886	
Crashes	242	10
R2	0.6090127	MA MA
CDP	3.273138	yariable variable
MACD	9.378979	- Cumu
MAD	0.3505452	Variable Variable Upper
Alpha	-13.0028	3 () 1
Beta1	1.041975	
Beta2	0.3267315	-10
Beta3	0.5502926	
p value	0.005633589	
CMF	1.73376	10000 20000 30000
AIC	1015.689	AADT

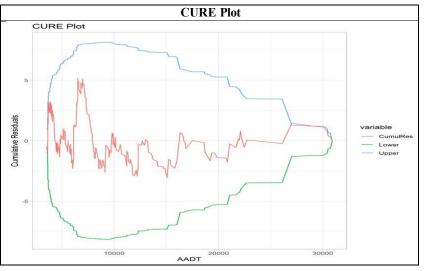
Parameter	Value	CURE Plot	
Intersection Type	Separate LT	CURE Plot	
Crash Type	Vehicle changing lanes		
Sample	462	10	
Crashes	195		
R2	0.6152568		
CDP	1.515152	dea sea	variable
MACD	8.317003	Cumulative Residuals	— CumulRes
MAD	0.4881691	The Thirty of the series	LowerUpper
Alpha	-12.5988	3 / MM/	
Beta1	0.971644		
Beta2	0.3756818	-10	
Beta3	0.4246057		
p value	0.04627968		
CMF	1.528987	10000 20000 30000	
AIC	707.4984	AADT	

Parameter	Value
Intersection Type	Undivided
Crash Type	Vehicle changing
	lanes
Sample	489
Crashes	56
R2	0.2540474
CDP	3.680982
MACD	5.359162
MAD	0.1976302
Alpha	-10.37524
Beta1	1.008215
Beta2	-0.08864716
Beta3	1.268939
p value	0.02031495
CMF	3.557077
AIC	360.4192

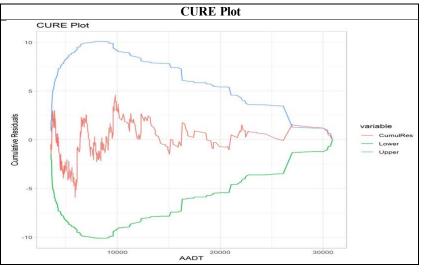
Parameter	Value
Intersection Type	3 Leg Intersection
Crash Type	CO
Sample	420
Crashes	1007
R2	0.4723153
CDP	0.7142857
MACD	36.4575
MAD	1.701866
Alpha	-7.316378
Beta1	0.5578911
Beta2	0.5218577
Beta3	0.5090343
p value	0.0001292149
CMF	1.663684
AIC	1736.633

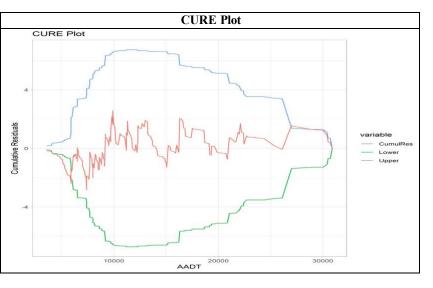

Parameter	Value	CURE Plot	
Intersection Type	4 Leg Intersection	CURE Plot	
Crash Type	CO	100	
Sample	466		
Crashes	3060		
R2	0.8370551	50	
CDP	0.2145923		
MACD	96.10932	Oumulative Residuals	
MAD	3.012321		ower
Alpha	-6.874475	Mu Mu	Ipper
Beta1	0.5168632		
Beta2	0.546507	-50	
Beta3	0.6574929		
p value	4.895234e-35		
CMF	1.929948	-100	
AIC	2593.446	10000 20000 30000 AADT	

Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	CO	
Sample	886	100
Crashes	4067	The state of the s
R2	0.8152474	50
CDP	0.3386005	
MACD	119.8283	variable See See See See See See See See See S
MAD	2.426215	— CumulRes — Lower
Alpha	-7.157277	— Upper
Beta1	0.5261108	-50
Beta2	0.5621462	
Beta3	0.6951644	M M
p value	1.141433e-47	-100
CMF	2.004038	
AIC	4367.357	10000 20000 30000 AADT

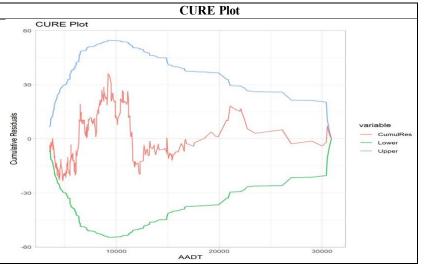

Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	CO	100
Sample	397	
Crashes	2720	
R2	0.8456465	50
CDP	0.2518892	
MACD	70.19007	variable CumulRe CumulRe Lower Upper
MAD	3.130714	e star o CumulRe — Lower
Alpha	-7.994475	— Upper
Beta1	0.6082816	
Beta2	0.556656	-50
Beta3	0.8232637	
p value	8.538416e-49	
CMF	2.277922	-100
AIC	2189.732	10000 20000 30000 AADT

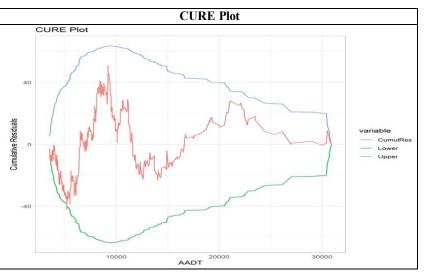
Parameter	Value	CURE Plot
Intersection Type	Separate LT	CURE Plot
Crash Type	CO	100
Sample	462	
Crashes	2986	, N
R2	0.8459044	50
CDP	0.2164502	
MACD	73.31703	variable - CumulRes - Lower - Upper
MAD	2.926532	CumulRes Lower
Alpha	-8.848283	— Upper
Beta1	0.6890195	Who was
Beta2	0.5788012	-50
Beta3	0.6734252	
p value	4.991897e-35	
CMF	1.960943	-100
AIC	2464.213	10000 20000 30000 AADT

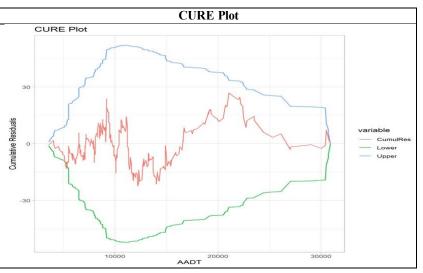

Parameter	Value
Intersection Type	Separate RT
Crash Type	CO
Sample	318
Crashes	2589
R2	0.845499
CDP	0.3144654
MACD	69.73279
MAD	3.413479
Alpha	-8.20424
Beta1	0.628048
Beta2	0.5971663
Beta3	0.4610768
p value	1.059852e-13
CMF	1.585781
AIC	1845.442

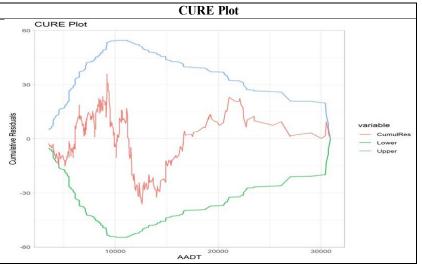

Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	Head On
Sample	466
Crashes	69
R2	0.972003
CDP	0.6437768
MACD	5.198628
MAD	0.2248556
Alpha	-2.693152
Beta1	-0.4283051
Beta2	0.636719
Beta3	0.734404
p value	0.03418698
CMF	2.084239
AIC	369.6523

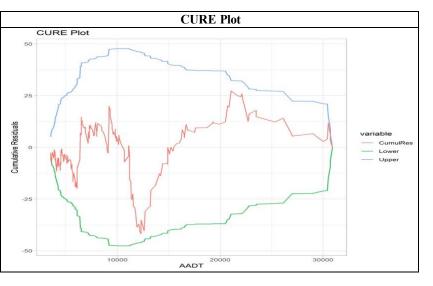
Parameter	Value
Intersection Type	All
Crash Type	Head On
Sample	886
Crashes	100
R2	0.6509797
CDP	1.128668
MACD	5.913246
MAD	0.1846577
Alpha	-2.617392
Beta1	-0.3913883
Beta2	0.5701961
Beta3	0.8224172
p value	0.009007205
CMF	2.275995
AIC	596.2094

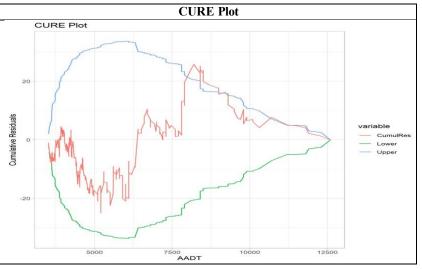

Parameter	Value
Intersection Type	Divided
Crash Type	Head On
Sample	397
Crashes	45
R2	0.85794
CDP	9.823678
MACD	2.843918
MAD	0.1628514
Alpha	-2.946017
Beta1	-0.424781
Beta2	0.5870103
Beta3	1.440131
p value	0.0010496
CMF	4.22125
AIC	239.4059

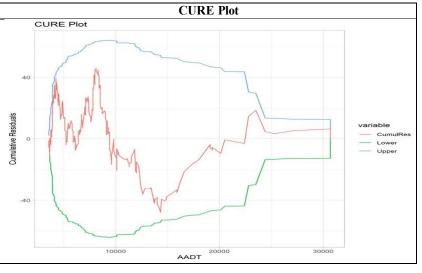

	1
Parameter	Value
Intersection Type	Undivided
Crash Type	KAB
Sample	489
Crashes	364
R2	0.23206
CDP	8.997955
MACD	19.17867
MAD	0.7652326
Alpha	-8.92632
Beta1	0.7233999
Beta2	0.3963001
Beta3	-1.265155
p value	0.001668797
CMF	0.2821956
AIC	1148.792

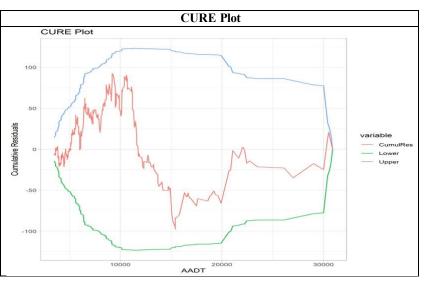

Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	KABC
Sample	466
Crashes	1426
R2	0.7246037
CDP	0.2145923
MACD	36.03626
MAD	1.78468
Alpha	-6.170738
Beta1	0.4511568
Beta2	0.4522157
Beta3	0.3347594
p value	1.747507e-05
CMF	1.397604
AIC	1980.992

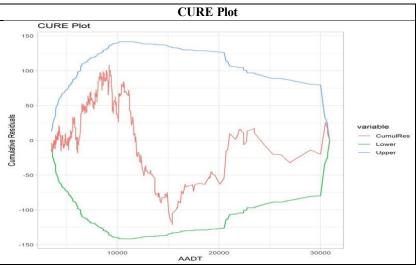

Parameter	Value
Intersection Type	All
Crash Type	KABC
Sample	886
Crashes	1937
R2	0.7042783
CDP	1.918736
MACD	50.82389
MAD	1.476437
Alpha	-7.409569
Beta1	0.5507548
Beta2	0.4798549
Beta3	0.364526
p value	2.938221e-07
CMF	1.439831
AIC	3295.748


Parameter	Value
Intersection Type	Divided
Crash Type	KABC
Sample	397
Crashes	1273
R2	0.7510573
CDP	2.267003
MACD	26.92031
MAD	1.821808
Alpha	-6.492912
Beta1	0.4427719
Beta2	0.4896535
Beta3	0.4789578
p value	2.543462e-09
CMF	1.614391
AIC	1704.591

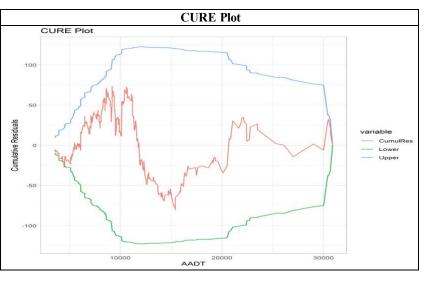

Parameter	Value
Intersection Type	Separate LT
Crash Type	KABC
Sample	462
Crashes	1395
R2	0.7351175
CDP	0.8658009
MACD	36.19865
MAD	1.799033
Alpha	-7.77971
Beta1	0.5649478
Beta2	0.5179528
Beta3	0.2800996
p value	0.0003653559
CMF	1.323262
AIC	1960.232


Parameter	Value
Intersection Type	Separate RT
Crash Type	KABC
Sample	318
Crashes	1114
R2	0.7754094
CDP	0.6289308
MACD	41.76175
MAD	1.848535
Alpha	-7.647638
Beta1	0.5848235
Beta2	0.4900525
Beta3	0.1842731
p value	0.04391513
CMF	1.202344
AIC	1368.569

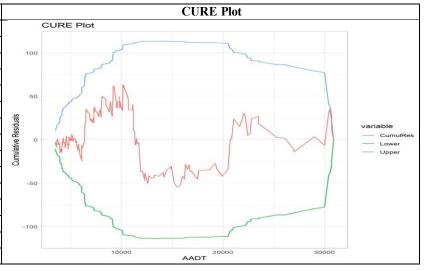

Parameter	Value
Intersection Type	Undivided
Crash Type	KABC
Sample	489
Crashes	664
R2	0.2831507
CDP	7.566462
MACD	25.76449
MAD	1.149935
Alpha	-8.493676
Beta1	0.7053834
Beta2	0.4438241
Beta3	-0.5273489
p value	0.01404338
CMF	0.5901675
AIC	1564.134


Parameter	Value
Intersection Type	3 Leg Intersection
Crash Type	KABCO
Sample	420
Crashes	1281
R2	0.435175
CDP	1.428571
MACD	47.87507
MAD	2.111777
Alpha	-7.329554
Beta1	0.6082555
Beta2	0.4923325
Beta3	0.4083551
p value	0.0008125562
CMF	1.504341
AIC	1997.634

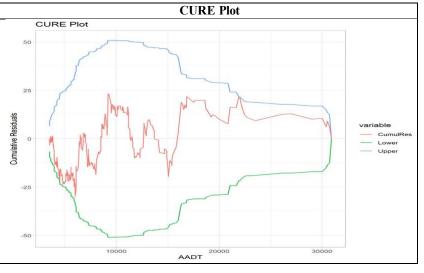
Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	KABCO
Sample	466
Crashes	3749
R2	0.8137904
CDP	0.2145923
MACD	97.69698
MAD	3.596586
Alpha	-6.189488
Beta1	0.4984976
Beta2	0.5129052
Beta3	0.5481026
p value	2.591413e-30
CMF	1.729967
AIC	2910.147

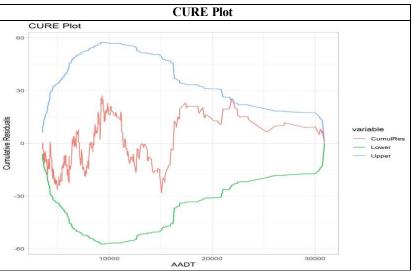


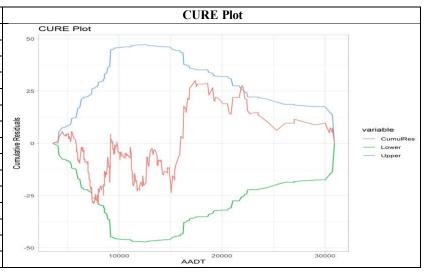
Parameter	Value	
Intersection Type	All	
Crash Type	KABCO	ĵ
Sample	886	
Crashes	5030	
R2	0.7903851	
CDP	0.1128668	S
MACD	121.2016	Cumulative Residuals
MAD	2.93202	ative R
Alpha	-6.720194	Cumul
Beta1	0.5287463	1
Beta2	0.5341773	
Beta3	0.5849732	- 4
p value	1.438999e-41	
CMF	1.794943	4
AIC	4979 341	



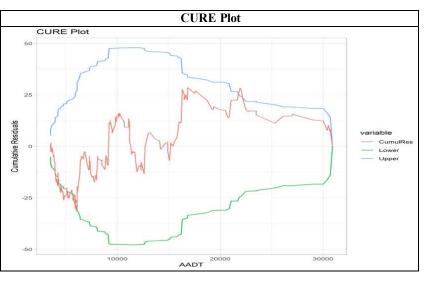
Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	KABCO	
Sample	397	100
Crashes	3319	
R2	0.8236788	50
CDP	0.2518892	T _w
MACD	75.0948	variable CumulRes Lower Upper
MAD	3.775658	CumulRes — Lower
Alpha	-7.147002	— Upper
Beta1	0.5674694	-50
Beta2	0.531642	
Beta3	0.7047971	
p value	1.026694e-44	-100
CMF	2.023436	
AIC	2523.406	10000 20000 30000 AADT


Parameter	Value
Intersection Type	Separate LT
Crash Type	KABCO
Sample	462
Crashes	3662
R2	0.8195958
CDP	1.731602
MACD	80.49314
MAD	3.608261
Alpha	-7.981126
Beta1	0.6470201
Beta2	0.5534484
Beta3	0.5432221
p value	8.429719e-29
CMF	1.721545
AIC	2867.63

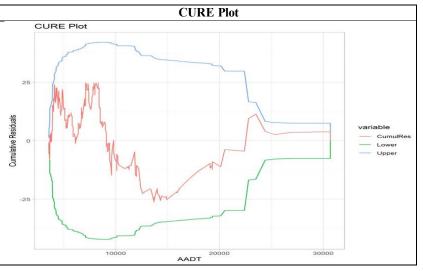

Parameter	Value
Intersection Type	Separate RT
Crash Type	KABCO
Sample	318
Crashes	3088
R2	0.829971
CDP	0.3144654
MACD	63.41351
MAD	3.996197
Alpha	-7.459669
Beta1	0.6043139
Beta2	0.5601594
Beta3	0.3739333
p value	2.434201e-11
CMF	1.45344
AIC	2049.668


Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	Left-turning vehicle
Sample	466
Crashes	976
R2	0.6181445
CDP	0.4291845
MACD	29.74512
MAD	1.471226
Alpha	-5.106055
Beta1	0.1947824
Beta2	0.5618591
Beta3	0.572902
p value	8.312323e-10
CMF	1.773406
AIC	1717.934

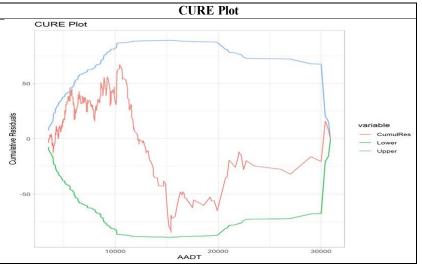
Parameter	Value	
Intersection Type	All	
Crash Type	Left-turning vehicle	
Sample	886	
Crashes	1389	
R2	0.6011156	
CDP	0.3386005	
MACD	28.17483	
MAD	1.215943	ć
Alpha	-5.436683	
Beta1	0.2293188	,
Beta2	0.5601478	
Beta3	0.5481948	
p value	4.619536e-11	
CMF	1.730127	
AIC	2857.439	



Parameter	Value
Intersection Type	Divided
Crash Type	Left-turning vehicle
Sample	397
Crashes	804
R2	0.6526228
CDP	4.534005
MACD	30.05387
MAD	1.427039
Alpha	-6.02743
Beta1	0.2202535
Beta2	0.6312276
Beta3	0.6864394
p value	8.838671e-12
CMF	1.986629
AIC	1344.734

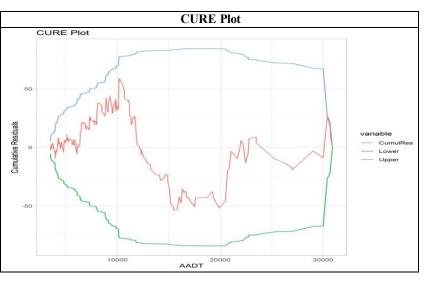


Parameter	Value	CURE Plot
Intersection Type	Separate LT	CURE Plot
Crash Type	Left-turning vehicle	50
Sample	462	
Crashes	925	
R2	0.6389518	25
CDP	1.298701	
MACD	27.73004	variable — CumulRes — Lower — Upper
MAD	1.386782	— CumulRes — Lower
Alpha	-6.604932	— Upper
Beta1	0.2870691	M. J. J. M. B. Call
Beta2	0.6414038	-25
Beta3	0.4825608	
p value	4.069462e-07	
CMF	1.620218	-50
AIC	1589.895	10000 20000 30000 AADT

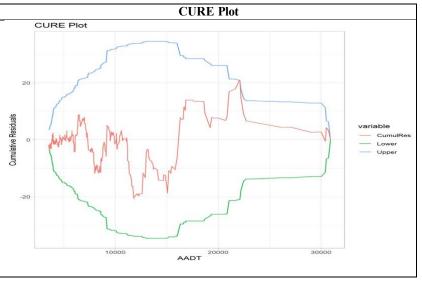

Parameter	Value
Intersection Type	Separate RT
Crash Type	Left-turning vehicle
Sample	318
Crashes	818
R2	0.6092136
CDP	27.04403
MACD	31.46255
MAD	1.635662
Alpha	-6.323006
Beta1	0.3082671
Beta2	0.6075211
Beta3	0.2706933
p value	0.01191808
CMF	1.310873
AIC	1261.876

Parameter	Value
Intersection Type	3 Leg Intersection
Crash Type	PDO
Sample	420
Crashes	770
R2	0.439437
CDP	0.7142857
MACD	26.22203
MAD	1.380706
Alpha	-7.097906
Beta1	0.4910492
Beta2	0.5395054
Beta3	0.502276
p value	0.001053433
CMF	1.652478
AIC	1513.183

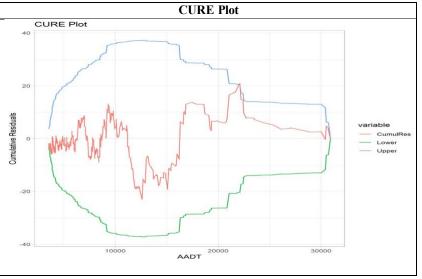
Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	PDO
Sample	466
Crashes	2323
R2	0.8182602
CDP	0.2145923
MACD	84.61416
MAD	2.441668
Alpha	-7.312426
Beta1	0.5277619
Beta2	0.5534172
Beta3	0.6721738
p value	4.413069e-28
CMF	1.95849
AIC	2297

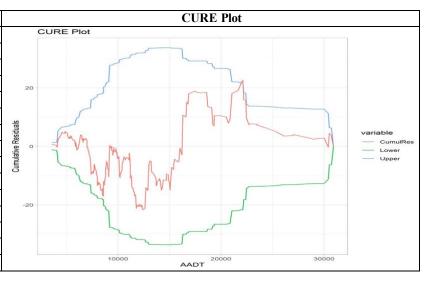


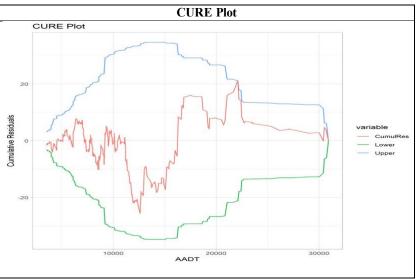
Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	PDO	100
Sample	886	
Crashes	3093	
R2	0.7958636	50
CDP	0.4514673	
MACD	106.9516	variable
MAD	1.95556	— CumulRes — Lower
Alpha	-7.386168	variable CumulRes Lower Upper
Beta1	0.5141502	
Beta2	0.5702367	-50
Beta3	0.709643	In moth
p value	3.441719e-38	
CMF	2.033265	-100
AIC	3832.387	10000 AADT 20000 30000

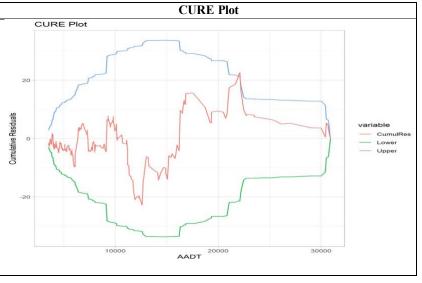

Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	PDO	
Sample	397	
Crashes	2046	50
R2	0.8232955	
CDP	0.2518892	
MACD	61.15888	variable
MAD	2.521816	variable — CumulRes — Lower — Upper
Alpha	-8.681197	— Upper
Beta1	0.6455421	
Beta2	0.560972	-50
Beta3	0.8451692	
p value	9.189239e-39	
CMF	2.328372	
AIC	1918.933	10000 20000 30000 AADT

Parameter	Value	CURE Plot
Intersection Type	Separate LT	CURE Plot
Crash Type	PDO	
Sample	462	
Crashes	2267	50
R2	0.8258535	
CDP	1.298701	
MACD	64.72035	variable - CumulRes - Lower - Upper
MAD	2.370138	CumulRes — Lower
Alpha	-9.204568	— Upper
Beta1	0.6970458	y my
Beta2	0.5770123	-50
Beta3	0.7051161	
p value	2.633058e-29	
CMF	2.024082	
AIC	2170.894	10000 20000 30000 AADT


Parameter	Value
Intersection Type	Separate RT
Crash Type	PDO
Sample	318
Crashes	1974
R2	0.8237668
CDP	0.6289308
MACD	58.74437
MAD	2.757734
Alpha	-8.416577
Beta1	0.6159242
Beta2	0.601987
Beta3	0.487835
p value	7.474777e-12
CMF	1.628786
AIC	1641.009


Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	Opposite-direction
	vehicles
Sample	466
Crashes	438
R2	0.5062189
CDP	0.2145923
MACD	20.95113
MAD	0.8937784
Alpha	-6.20323
Beta1	0.1375939
Beta2	0.6528557
Beta3	0.8311014
p value	2.831973e-09
CMF	2.295846
AIC	1088.616


Parameter	Value
Intersection Type	All
Crash Type	Opposite-direction
	vehicles
Sample	886
Crashes	572
R2	0.5103842
CDP	0.3386005
MACD	23.06672
MAD	0.6910696
Alpha	-5.86913
Beta1	0.1046501
Beta2	0.6335445
Beta3	0.934013
p value	2.408699e-13
CMF	2.544701
AIC	1696.368

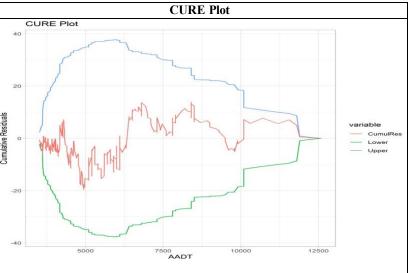

Parameter	Value
Intersection Type	Divided
Crash Type	opposite
Sample	397
Crashes	351
R2	0.5060383
CDP	0.7556675
MACD	22.55174
MAD	0.8550022
Alpha	-6.568603
Beta1	0.08606028
Beta2	0.7223497
Beta3	1.127685
p value	9.238054e-13
CMF	3.0885
AIC	841.6628

Parameter	Value
Intersection Type	Separate LT
Crash Type	Opposite-direction
	vehicles
Sample	462
Crashes	408
R2	0.4951071
CDP	0.2164502
MACD	25.64119
MAD	0.8551405
Alpha	-7.020661
Beta1	0.1395935
Beta2	0.7434134
Beta3	0.8279786
p value	1.210947e-08
CMF	2.288688
AIC	1010.626

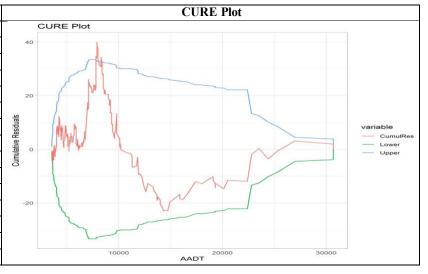
Parameter	Value
Intersection Type	Separate RT
Crash Type	Opposite-direction
	vehicles
Sample	318
Crashes	380
R2	0.479091
CDP	0.9433962
MACD	22.75459
MAD	1.066092
Alpha	-7.051989
Beta1	0.1639705
Beta2	0.758461
Beta3	0.4869575
p value	0.002585842
CMF	1.627357
AIC	844.9332

Parameter	Value	CURE Plot
Intersection Type	3 Leg Intersection	CURE Plot
Crash Type	Perpendicular- direction vehicles	
Sample	420	20
Crashes	399	Ann
R2	0.1518867	
CDP	0.2380952	variable
MACD	19.93052	OZ O CumulRo
MAD	0.9756512	variable CumulRive CumulRive Lower Upper
Alpha	-12.13743	
Beta1	0.932546	
Beta2	0.6151063	-20
Beta3	-1.019801	
p value	0.0007246535	
CMF	0.3606668	10000 20000 30000 AADT
AIC	1120.972	

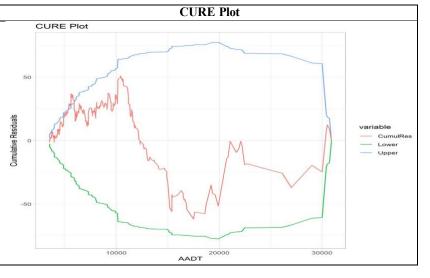
Parameter	Value	CURE Plot	
Intersection Type	4 Leg Intersection	CURE Plot	
Crash Type	Perpendicular- direction vehicles	60	
Sample	466		
Crashes	1391	30	
R2	0.4632412		
CDP	3.433476	significant signif	variable
MACD	36.7347	e e e e e e e e e e e e e e e e e e e	CumulRes Lower
MAD	1.878693	Ounulaine Residuals	- Upper
Alpha	-5.132371		
Beta1	0.2601625	-30	
Beta2	0.5843354	<u></u>	
Beta3	-0.5270353		
p value	2.418897e-10	-60	
CMF	0.5903526	10000 20000 30000 AADT	
AIC	2092.417		

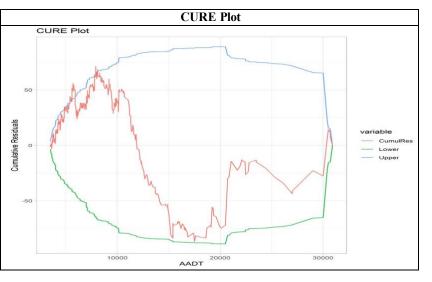

Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	Perpendicular- direction vehicles	
Sample	886	
Crashes	1790	40
R2	0.4117321	
CDP	21.7833	variable
MACD	60.71556	CumulRes — Lower
MAD	1.567791	variable GumulRes Lower Upper
Alpha	-7.583294	
Beta1	0.4456375	
Beta2	0.662112	-40
Beta3	-0.5502757	Miles and the second se
p value	2.219824e-12	
CMF	0.5767908	10000 20000 30000 AADT
AIC	3435.973	

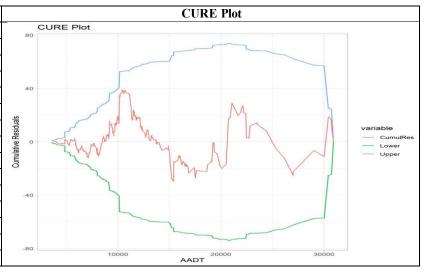
Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	Perpendicular- direction vehicles	60
Sample	397	
Crashes	1142	30
R2	0.3908663	M
CDP	5.289673	variable
MACD	29.8562	variable Cumult Lower Upper
MAD	2.009379	— Upper
Alpha	-4.918581	
Beta1	0.2084988	-30
Beta2	0.6045337	
Beta3	-0.4150838	
p value	1.803472e-06	-60
CMF	0.6602849	10000 20000 30000 AADT
AIC	1849.83	

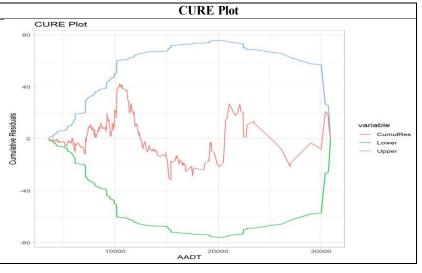

Parameter	Value	CURE Plot
Intersection Type	Separate LT	CURE Plot
Crash Type	Perpendicular- direction vehicles	60
Sample	462	
Crashes	1298	30
R2	0.4054522	
CDP	10.17316	variable variable
MACD	35.85328	CumulRe — Lower
MAD	1.972972	variable CumulRe Lower Upper
Alpha	-5.959606	
Beta1	0.3112799	-30
Beta2	0.6233133	
Beta3	-0.5560226	
p value	4.014875e-11	-60
CMF	0.5734855	10000 20000 30000 AADT
AIC	2120.72	A COMPANIENCE OF THE PROPERTY

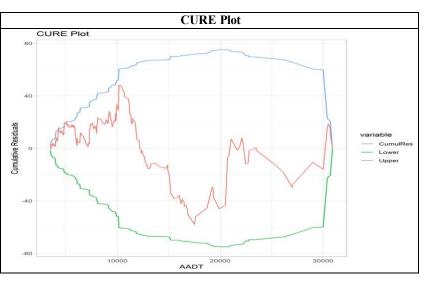
Parameter	Value	CURE Plot
Intersection Type	Separate RT	CURE Plot
Crash Type	Perpendicular- direction vehicles	
Sample	318	
Crashes	964	25
R2	0.5478117	
CDP	22.95597	variable
MACD	43.13354	CumulRes Lower
MAD	1.922802	variable — CumulRes — Lower — Upper
Alpha	-6.84441	
Beta1	0.3919949	-25
Beta2	0.6577133	to
Beta3	-0.7424541	
p value	4.777618e-14	
CMF	0.4759445	-50 10000 20000 30000 AADT
AIC	1414.821	The state of

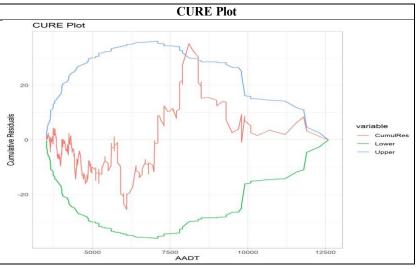

Parameter	Value	
Intersection Type	Undivided	40
Crash Type	Perpendicular-	40
	direction vehicles	
Sample	489	
Crashes	648	20
R2	0.3577583	
CDP	0.204499	siduals
MACD	19.62609	Cumulative Residuals
MAD	1.169607	umulat
Alpha	-8.26693	
Beta1	0.4355097	-20
Beta2	0.7645405	
Beta3	-0.8003616	
p value	0.0001199673	-40
CMF	0.4491665	-40
AIC	1559.182	


Parameter	Value
Intersection Type	3 Leg Intersection
Crash Type	Rear end
Sample	420
Crashes	468
R2	0.486842
CDP	3.809524
MACD	39.94773
MAD	1.096481
Alpha	-7.270829
Beta1	0.593499
Beta2	0.333679
Beta3	1.226204
p value	9.877664e-12
CMF	3.408268
AIC	1286.544

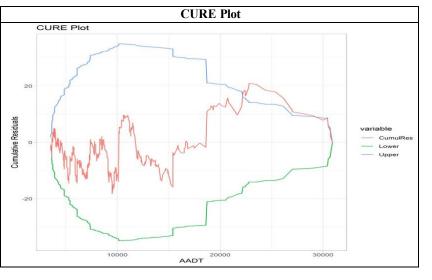

Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	Rear end
Sample	466
Crashes	1500
R2	0.8169537
CDP	6.652361
MACD	61.98546
MAD	1.7643
Alpha	-10.47746
Beta1	0.8410931
Beta2	0.4777355
Beta3	1.258479
p value	2.545545e-54
CMF	3.520063
AIC	1770.027

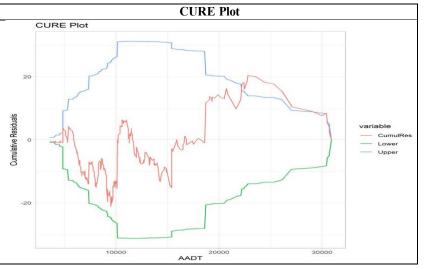

Parameter	Value
Intersection Type	All
Crash Type	Rear end
Sample	886
Crashes	1968
R2	0.7832564
CDP	8.126411
MACD	86.75861
MAD	1.477442
Alpha	-9.555021
Beta1	0.7706119
Beta2	0.4402168
Beta3	1.305724
p value	1.014899e-76
CMF	3.690362
AIC	3072.401

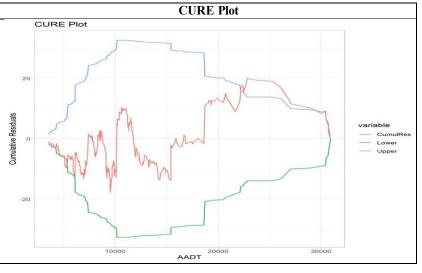

Parameter	Value
Intersection Type	Divided
Crash Type	Rear end
Sample	397
Crashes	1385
R2	0.8312533
CDP	0.2518892
MACD	38.99267
MAD	1.797033
Alpha	-12.55276
Beta1	1.012265
Beta2	0.5003274
Beta3	1.482627
p value	1.097076e-65
CMF	4.404502
AIC	1414.785

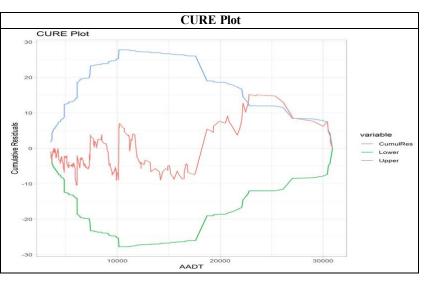

Parameter	Value
Intersection Type	Separate LT
Crash Type	Rear end
Sample	462
Crashes	1485
R2	0.8295411
CDP	0.2164502
MACD	42.53488
MAD	1.698121
Alpha	-13.33191
Beta1	1.082813
Beta2	0.5238594
Beta3	1.351841
p value	2.429132e-57
CMF	3.864534
AIC	1611.112

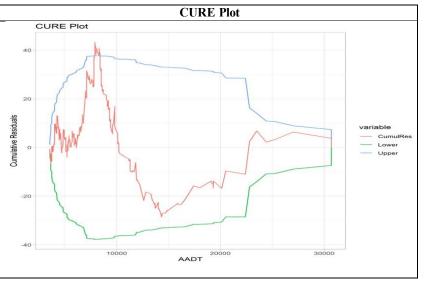
Parameter	Value
Intersection Type	Separate RT
Crash Type	Rear end
Sample	318
Crashes	1367
R2	0.8143508
CDP	2.830189
MACD	57.82324
MAD	2.170259
Alpha	-11.45672
Beta1	0.9312322
Beta2	0.494558
Beta3	1.197169
p value	3.857827e-37
CMF	3.310731
AIC	1322.682

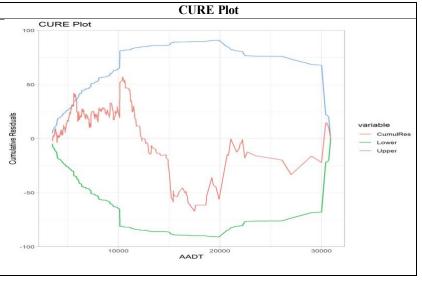

Parameter	Value
Intersection Type	Undivided
Crash Type	Rear end
Sample	489
Crashes	583
R2	0.3618477
CDP	1.226994
MACD	35.28208
MAD	1.09511
Alpha	-10.57182
Beta1	1.008224
Beta2	0.3263512
Beta3	0.5658176
p value	0.0006805581
CMF	1.760887
AIC	1526.753


Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	Right-turning vehicle
Sample	466
Crashes	415
R2	0.5505551
CDP	1.502146
MACD	17.25886
MAD	0.8237181
Alpha	-9.746382
Beta1	0.6169862
Beta2	0.5501562
Beta3	0.4898175
p value	0.0006747362
CMF	1.632018
AIC	1095.418


Parameter	Value
Intersection Type	All
Crash Type	Right-turning vehicle
Sample	886
Crashes	569
R2	0.5531593
CDP	2.708804
MACD	20.9439
MAD	0.6639344
Alpha	-9.640847
Beta1	0.577748
Beta2	0.5774466
Beta3	0.5188801
p value	5.002316e-05
CMF	1.680145
AIC	1727.532

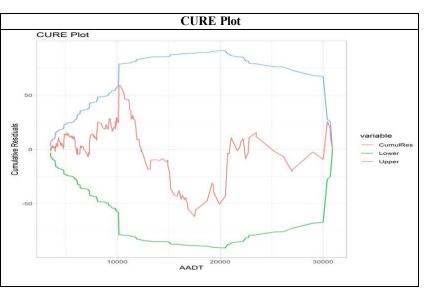

Parameter	Value
Intersection Type	Divided
Crash Type	Right-turning vehicle
Sample	397
Crashes	391
R2	0.5580783
CDP	3.778338
MACD	21.08231
MAD	0.8846841
Alpha	-8.983916
Beta1	0.5169558
Beta2	0.5584995
Beta3	0.6550376
p value	6.932444e-06
CMF	1.925215
AIC	978.896


Parameter	Value
Intersection Type	Separate LT
Crash Type	Right-turning vehicle
Sample	462
Crashes	445
R2	0.5469559
CDP	8.441558
MACD	20.0046
MAD	0.868247
Alpha	-9.819175
Beta1	0.5977888
Beta2	0.5879891
Beta3	0.4153288
p value	0.002815406
CMF	1.514869
AIC	1145.08

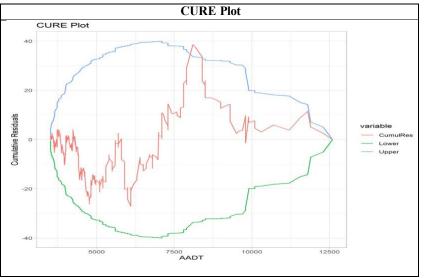

Parameter	Value
Intersection Type	Separate RT
Crash Type	Right-turning vehicle
Sample	318
Crashes	331
R2	0.6216651
CDP	5.031447
MACD	15.16226
MAD	0.84517
Alpha	-9.781111
Beta1	0.5010318
Beta2	0.6909788
Beta3	0.4295042
p value	0.0137
CMF	1.536496
AIC	767.7197

Parameter	Value
Intersection Type	3 Leg Intersection
Crash Type	Same-direction
	vehicles
Sample	420
Crashes	601
R2	0.51898
CDP	4.285714
MACD	43.23868
MAD	1.233105
Alpha	-8.206416
Beta1	0.7627224
Beta2	0.2825385
Beta3	1.084979
p value	2.042927e-11
CMF	2.959379
AIC	1414.606

Parameter	Value
Intersection Type	4 Leg Intersection
Crash Type	Same-direction
	vehicles
Sample	466
Crashes	1843
R2	0.8145533
CDP	6.223176
MACD	67.15558
MAD	2.017391
Alpha	-9.421767
Beta1	0.7635405
Beta2	0.4632938
Beta3	1.257094
p value	2.035281e-67
CMF	3.515191
AIC	1965.611



Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	Same-direction vehicles	100
Sample	886	, K
Crashes	2444	50
R2	0.782484	
CDP	0.6772009	variable
MACD	91.46165	variable CumulRes Lower Upper
MAD	1.686438	teln — Upper
Alpha	-9.063701	
Beta1	0.7646421	-50
Beta2	0.4129685	
Beta3	1.27965	Lymps -
p value	1.218473e-91	-100
CMF	3.595383	10000 20000 30000 AADT
AIC	3398.784	


Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	Same-direction vehicles	
Sample	397	
Crashes	1738	50
R2	0.8194867	
CDP	0.7556675	variable
MACD	41.33811	CumulRes
MAD	2.102129	variable CumulRes Lower Upper
Alpha	-11.02965	T o My
Beta1	0.9124832	-50
Beta2	0.4641464	-50
Beta3	1.421059	
p value	3.304377e-79	
CMF	4.141503	10000 20000 30000 AADT
AIC	1621.972	a community

Parameter	Value	CURE Plot
Intersection Type	Separate LT	CURE Plot
Crash Type	Same-direction vehicles	
Sample	462	
Crashes	1852	50
R2	0.8165594	
CDP	6.926407	variable
MACD	47.68245	variable CumulRes Lower Upper
MAD	1.991794	— Upper
Alpha	-12.20671	
Beta1	1.024341	-50
Beta2	0.485871	
Beta3	1.294945	
p value	3.55042e-68	
CMF	3.650796	-100 10000 20000 30000 AADT
AIC	1832.263	Tables (American)

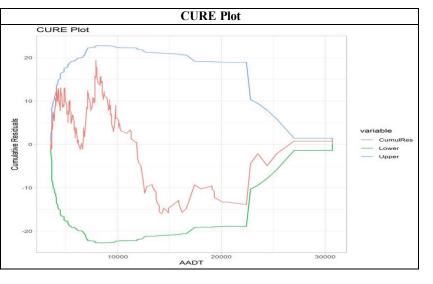
Parameter	Value
Intersection Type	Separate RT
Crash Type	Same-direction
	vehicles
Sample	318
Crashes	1669
R2	0.8030976
CDP	0.3144654
MACD	62.0909
MAD	2.57625
Alpha	-10.65093
Beta1	0.8794026
Beta2	0.4865418
Beta3	1.140805
p value	2.249552e-42
CMF	3.129287
AIC	1501.21

Parameter	Value
Intersection Type	Undivided
Crash Type	Same-direction
	vehicles
Sample	489
Crashes	706
R2	0.3767018
CDP	1.022495
MACD	38.60877
MAD	1.229588
Alpha	-10.13166
Beta1	1.001509
Beta2	0.2967433
Beta3	0.5670266
p value	0.0002213428
CMF	1.763017
AIC	1667.384

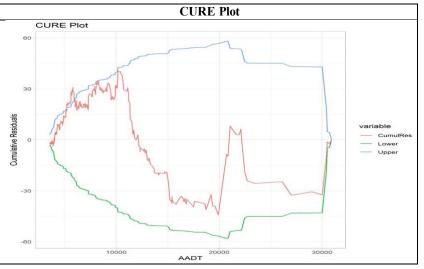
Parameter	Value	CURE Plot
Intersection Type	3 Leg Intersection	CURE Plot
Crash Type	Sideswipe same direction	10
Sample	420	
Crashes	112	5
R2	0.7450394	
CDP	4.761905	variable
MACD	6.79575	variable — CumulRes — Lower — Upper
MAD	0.3540116	— Upper
Alpha	-14.8123	o lin Yu
Beta1	1.405057	-5
Beta2	0.1383672	
Beta3	0.799501	
p value	0.0312998	-10
CMF	2.224431	10000 20000 30000 AADT
AIC	487.7339	The state of

Parameter	Value	CURE Plot
Intersection Type	4 Leg Intersection	CURE Plot
Crash Type	Sideswipe same direction	20
Sample	466	
Crashes	294	10
R2	0.6439019	N
CDP	0.2145923	variable
MACD	11.8313	CumulRes — Lower
MAD	0.5791161	variable CumulRes Lower Upper
Alpha	-9.117709	My 1
Beta1	0.5296032	-10
Beta2	0.4811889	
Beta3	1.144523	-20
p value	9.245059e-11	
CMF	3.140942	10000 20000 30000 AADT
AIC	812.1837	

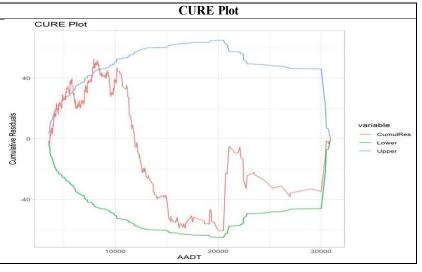
Parameter	Value	CURE Plot
Intersection Type	All	CURE Plot
Crash Type	Sideswipe same direction	
Sample	886	20
Crashes	406	
R2	0.6012859	10
CDP	5.643341	variable
MACD	16.31415	S O Marie Cumul
MAD	0.4850674	Variable Upper Upper
Alpha	-11.0807	-10
Beta1	0.8396572	
Beta2	0.361485	
Beta3	1.088122	-20
p value	1.386154e-12	
CMF	2.968692	-30 10000 20000 30000 AADT
AIC	1313.364	

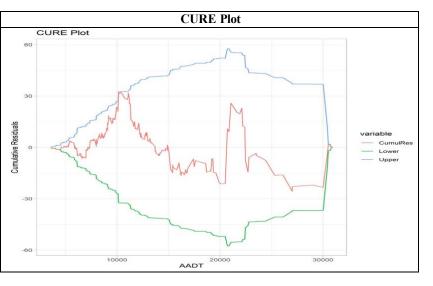

Parameter	Value	CURE Plot
Intersection Type	Divided	CURE Plot
Crash Type	Sideswipe same direction	20
Sample	397	
Crashes	317	
R2	0.5925014	10
CDP	6.801008	variable
MACD	15.44047	variable — CumulRes — Lower — Upper
MAD	0.7172726	ten — Upper
Alpha	-9.146776	10
Beta1	0.6220295	-10
Beta2	0.3899617	
Beta3	1.077073	-20
p value	8.254742e-11	
CMF	2.936073	10000 20000 30000 AADT
AIC	833.0827	a to come to

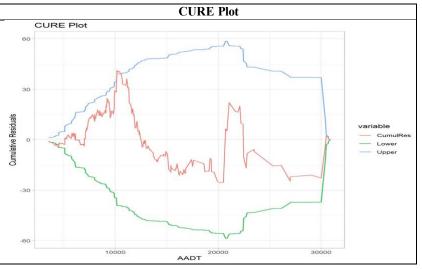
Parameter	Value	CURE Plot
Intersection Type	Separate LT	CURE Plot
Crash Type	Sideswipe same direction	20
Sample	462	20
Crashes	326	
R2	0.5784393	10
CDP	30.30303	variable
MACD	16.04685	CumulRes
MAD	0.6505516	variable CumulRes Lower Upper
Alpha	-11.28453	7 19
Beta1	0.8408024	-10
Beta2	0.3912079	
Beta3	1.034546	-20
p value	6.567203e-10	
CMF	2.813829	10000 20000 30000
AIC	888.5873	AADT

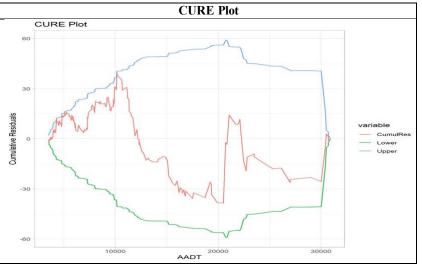

Parameter	Value	CURE Plot
Intersection Type	Separate RT	CURE Plot
Crash Type	Sideswipe same direction	20
Sample	318	
Crashes	260	
R2	0.6044633	10
CDP	2.830189	yariable variable
MACD	11.73491	— CumulRe
MAD	0.6799114	variable — CumulRe — Lower — Upper
Alpha	-10.67665	3
Beta1	0.6957758	-10
Beta2	0.4865738	
Beta3	1.034788	.20
p value	4.563555e-07	- 120
CMF	2.81451	10000 20000 30000
AIC	632.0872	AADT

Parameter	Value	CURE Plot
Intersection Type	Undivided	CURE Plot
Crash Type	Sideswipe same direction	
Sample	489	
Crashes	89	5
R2	1.540938	
CDP	0.204499	y variable
MACD	7.571692	CumulRes
MAD	0.2870617	variable — CumulRes — Lower — Upper
Alpha	-9.300197	3
Beta1	0.7273213	
Beta2	0.2066314	-5
Beta3	1.033947	
p value	0.01245417	
CMF	2.812144	5000 7500 10000 12500
AIC	476.7495	AADT


Parameter	Value		
Intersection Type	3 Leg Intersection		
Crash Type	Stopped vehicle		
Sample	420		
Crashes	264		
R2	0.4869071		
CDP	0.2380952		
MACD	19.32353		
MAD	0.7139916		
Alpha	-8.616334		
Beta1	0.5630851		
Beta2	0.4993839		
Beta3	1.04187		
p value	6.611163e-06		
CMF	2.834513		
AIC	883.0388		


Parameter	Value	
Intersection Type	4 Leg Intersection	
Crash Type	Stopped vehicle	
Sample	466	
Crashes	1019	
R2	0.7994874	
CDP	11.37339	
MACD	44.23575	
MAD	1.285381	
Alpha	-10.46486	
Beta1	0.7040786	
Beta2	0.5861308	
Beta3	1.317217	
p value	8.989139e-40	
CMF	3.733019	
AIC	1360.523	


Parameter	Value	
Intersection Type	All	
Crash Type	Stopped vehicle	
Sample	886	
Crashes	1283	
R2	0.7751563	
CDP	23.36343	
MACD	60.74597	
MAD	1.029861	
Alpha	-9.989584	
Beta1	0.6653816	
Beta2	0.5694711	
Beta3	1.325446	
p value	1.376184e-51	
CMF	3.763865	
AIC	2248.771	


Parameter	Value	
Intersection Type	Divided	
Crash Type	Stopped vehicle	
Sample	397	
Crashes	920	
R2	0.8168858	
CDP	0.7556675	
MACD	32.17701	
MAD	1.268114	
Alpha	-13.1274	
Beta1	0.9201271	
Beta2	0.6242469	
Beta3	1.558609	
p value	1.879196e-45	
CMF	4.752204	
AIC	1043.391	

Parameter	Value	
Intersection Type	Separate LT	
Crash Type	Stopped vehicle	
Sample	462	
Crashes	996	
R2	0.8122085	
CDP	7.792208	
MACD	41.42009	
MAD	1.239163	
Alpha	-13.51138	
Beta1	0.961944	
Beta2	0.6357231	
Beta3	1.414019	
p value	1.824583e-40	
CMF	4.112452	
AIC	1218.441	

Parameter	Value
Intersection Type	Separate RT
Crash Type	Stopped vehicle
Sample	318
Crashes	953
R2	0.7838929
CDP	0.6289308
MACD	39.26939
MAD	1.628574
Alpha	-11.60075
Beta1	0.8455965
Beta2	0.5747264
Beta3	1.144812
p value	7.172781e-24
CMF	3.14185
AIC	1075.906

Parameter	Value	CURE Plot
Intersection Type	Undivided	CURE Plot
Crash Type	Stopped vehicle	
Sample	489	20
Crashes	363	
R2	0.4560897	10
CDP	0.204499	
MACD	18.09283	variable Lower Upper
MAD	0.774496	e o O O O O O O O O O O O O O O O O O O
Alpha	-10.19907	Upper /
Beta1	0.794586	-10
Beta2	0.4812154	
Beta3	0.5808848	
p value	0.003866492	-20
CMF	1.787619	
AIC	1118.317	5000 7500 10000 12500 AADT

THE INSTITUTE FOR TRANSPORTATION IS THE FOCAL POINT FOR TRANSPORTATION AT IOWA STATE UNIVERSITY.

InTrans centers and programs perform transportation research and provide technology transfer services for government agencies and private companies;

InTrans contributes to Iowa State University and the College of Engineering's educational programs for transportation students and provides K–12 outreach; and

InTrans conducts local, regional, and national transportation services and continuing education programs.

